Abstract:
We prove functional independence and joint functional independence for a set of Hurwitz zeta functions with periodic coefficients and parameters algebraically independent over the field of rational numbers.
This publication is cited in the following 5 articles:
Virginija Garbaliauskienė, Renata Macaitienė, Darius Šiaučiūnas, “ON THE FUNCTIONAL INDEPENDENCE OF THE RIEMANN ZETA-FUNCTION”, Mathematical Modelling and Analysis, 28:2 (2023), 352
Kacinskaite R. Kazlauskaite B., “Two Results Related to the Universality of Zeta-Functions With Periodic Coefficients”, Results Math., 73:3 (2018), UNSP 95
Kacinskaite R., Matsumoto K., “Remarks on the Mixed Joint Universality For a Class of Zeta Functions”, Bull. Aust. Math. Soc., 95:2 (2017), 187–198
R. Kachinskaite, S. Rapimbergaite, “Smeshannaya sovmestnaya funktsionalnaya nezavisimost dlya dzeta-funktsii Rimana i periodicheskikh dzeta-funktsiii Gurvitsa”, Chebyshevskii sb., 17:4 (2016), 57–64
A. Laurinčikas, “Some value-distribution theorems for periodic Hurwitz zeta-functions”, J. Math. Sci., 180:5 (2012), 581–591