Abstract:
In 2007, H. Mishou proved the universality theorem on the joint approximation of a pair of analytic functions by the shifts (ζ(s+iτ),ζ(s+iτ,α)) of the Riemann zeta-function and the Hurwitz zeta-function with transcendental parameter α. In this paper, we obtain a similar theorem on approximation by the shifts (ζuN(s+ikh1),ζuN(s+ikh2,α)), k∈N∪{0}, h1,h2>0, where ζuN(s) and ζuN(s,α) are absolutely convergent Dirichlet series, and, as N→∞, they tend in mean to ζ(s) and ζ(s,α) respectively.
\Bibitem{Lau22}
\by A.~Laurin{\v{c}}ikas
\paper On Joint Universality of the Riemann and Hurwitz Zeta-Functions
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 4
\pages 551--560
\mathnet{http://mi.mathnet.ru/mzm13259}
\crossref{https://doi.org/10.4213/mzm13259}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 4
\pages 571--578
\crossref{https://doi.org/10.1134/S0001434622030257}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128983183}
Linking options:
https://www.mathnet.ru/eng/mzm13259
https://doi.org/10.4213/mzm13259
https://www.mathnet.ru/eng/mzm/v111/i4/p551
This publication is cited in the following 1 articles:
Aidas Balčiūnas, Mindaugas Jasas, Audronė Rimkevičienė, “A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS”, Mathematical Modelling and Analysis, 29:2 (2024), 331