Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2015, Volume 16, Issue 1, Pages 205–218 (Mi cheb376)  

INTERNATIONAL CONFERENCE IN MEMORY OF A. A. KARATSUBA ON NUMBER THEORY AND APPLICATIONS

Joint disctrete universality of Dirichlet $L$-functions. II

A. Laurinčikasa, D. Korsakienėb, D. Šiaučiūnasb

a Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
b Institute of Informatics, Mathematics and E-studies, Šiauliai University, P. Višinskio str. 19, LT-77156, Šiauliai, Lithuania
Full-text PDF (313 kB) Citations (1)
References:
Abstract: In 1975, S. M. Voronin obtained the universality of Dirichlet $L$-functions $L(s,\chi)$, $s=\sigma+it$. This means that, for every compact $K$ of the strip $\{s\in \mathbb{C}: \tfrac{1}{2}<\sigma<1\}$, every continuous non-vanishing function on $K$ which is analytic in the interior of $K$ can be approximated uniformly on $K$ by shifts $L(s+i\tau,\chi)$, $\tau\in \mathbb{R}$. Also, S. M. Voronin investigating the functional independence of Dirichlet $L$-functions obtained the joint universality. In this case, a collection of analytic functions is approximated simultaneously by shifts $L(s+i\tau,\chi_1), \dots, L(s+i\tau,\chi_r)$, where $\chi_1,\dots,\chi_r$ are pairwise non-equivalent Dirichlet characters.
The above universality is of continuous type. Also, a joint discrete universality for Dirichlet $L$-functions is known. In this case, a collection of analytic functions is approximated by discrete shifts $L(s+ikh,\chi_1), \dots, L(s+ikh,\chi_r)$, where $h>0$ is a fixed number and $k\in \mathbb{N}_0=\mathbb{N}\cup\{0\}$, and was proposed by B. Bagchi in 1981. For joint discrete universality of Dirichlet $L$-functions, a more general setting is possible. In [3], the approximation by shifts $L(s+ikh_1,\chi_1), \dots, L(s+ikh_r,\chi_r)$ with different $h_1>0,\dots, h_r>0$ was considered. This paper is devoted to approximation by shifts $L(s+ikh_1,\chi_1), \dots, L(s+ikh_{r_1},\chi_{r_1}), L(s+ikh,\chi_{r_1+1}), \dots, L(s+ikh,\chi_r)$, with different $h_1,\dots, h_{r_1}, h$. For this, the linear independence over $\mathbb{Q}$ of the set
\begin{align*} L(h_1,\dots,h_{r_1}, h; \pi)=\big\{(h_1\log p:\; p\in \mathcal{P}), \dots, (h_{r_1}\log p:\; p\in \mathcal{P}),\\ (h\log p:\; p\in \mathcal{P});\pi \big\}, \end{align*}
where $\mathcal{P}$ denotes the set of all prime numbers, is applied.
Bibliography: 10 titles.
Keywords: analytic function, Dirichlet $L$-function, linear independence, universality.
Received: 18.02.2015
Bibliographic databases:
Document Type: Article
UDC: 519.14
Language: English
Citation: A. Laurinčikas, D. Korsakienė, D. Šiaučiūnas, “Joint disctrete universality of Dirichlet $L$-functions. II”, Chebyshevskii Sb., 16:1 (2015), 205–218
Citation in format AMSBIB
\Bibitem{LauKorSia15}
\by A.~Laurin{\v{c}}ikas, D.~Korsakien{\.e}, D.~{\v S}iau{\v{c}}i{\=u}nas
\paper Joint disctrete universality of Dirichlet $L$-functions.~II
\jour Chebyshevskii Sb.
\yr 2015
\vol 16
\issue 1
\pages 205--218
\mathnet{http://mi.mathnet.ru/cheb376}
\elib{https://elibrary.ru/item.asp?id=23384585}
Linking options:
  • https://www.mathnet.ru/eng/cheb376
  • https://www.mathnet.ru/eng/cheb/v16/i1/p205
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :77
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024