Abstract:
In this paper, we establish an approximate functional equation for the Lerch zeta function, which is a generalization of the Riemann zeta function and the Hurwitz zeta function.
Citation:
R. Garunkstis, A. P. Laurincikas, J. Steuding, “An Approximate Functional Equation for the Lerch Zeta Function”, Mat. Zametki, 74:4 (2003), 494–501; Math. Notes, 74:4 (2003), 469–476
This publication is cited in the following 6 articles:
Antanas Laurinčikas, Darius Šiaučiūnas, “The Mean Square of the Hurwitz Zeta-Function in Short Intervals”, Axioms, 13:8 (2024), 510
Emanuel Guariglia, “Fractional Calculus of the Lerch Zeta Function”, Mediterr. J. Math., 19:3 (2022)
Athanassios Fokas, Jonatan Lenells, “On the Asymptotics to all Orders of the Riemann Zeta Function and of a Two-Parameter Generalization of the Riemann Zeta Function”, Memoirs of the AMS, 275:1351 (2022)
Miyagawa T., “Approximate Functional Equation and Upper Bounds For the Barnes Double Zeta-Function”, JP J. Algebr. Number Theory Appl., 43:2 (2019), 155–183
Ramūnas Garunkštis, Justas Kalpokas, “Sum of the periodic zeta-function over the nontrivial zeros of the Riemann zeta-function”, Analysis, 28:2 (2008)
Laurincikas, A, “On the fourth power moment of the function zeta(lambda)(s)”, Integral Transforms and Special Functions, 18:9 (2007), 629