|
This article is cited in 9 scientific papers (total in 9 papers)
Research Papers
Discrete universality of the Riemann zeta-function and uniform distribution modulo 1
A. Laurinčikas Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
Abstract:
It is proved that a wide class of analytic functions can be approximated by shifts $\zeta(s+i\varphi(k))$, $k\geqslant k_0$, $k\in\mathbb N$, of the Riemann zeta-function. Here the function $\varphi(t)$ has a continuous nonvanishing derivative on $[k_0,\infty)$ satisfying the estimate $\varphi(2t)\max_{t\leqslant u\leqslant2t}(\varphi'(u))^{-1}\ll t$, and the sequence $\{a\varphi(k)\colon k\geqslant k_0\}$ with every real $a\neq0$ is uniformly distributed modulo 1. Examples of $\varphi(t)$ are given.
Keywords:
Riemann zeta-function, uniform distribution modulo 1, universality, weak convergence.
Received: 26.11.2016
Citation:
A. Laurinčikas, “Discrete universality of the Riemann zeta-function and uniform distribution modulo 1”, Algebra i Analiz, 30:1 (2018), 139–150; St. Petersburg Math. J., 30:1 (2019), 103–110
Linking options:
https://www.mathnet.ru/eng/aa1574 https://www.mathnet.ru/eng/aa/v30/i1/p139
|
Statistics & downloads: |
Abstract page: | 296 | Full-text PDF : | 31 | References: | 27 | First page: | 12 |
|