Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 1, Pages 139–150 (Mi aa1574)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

Discrete universality of the Riemann zeta-function and uniform distribution modulo 1

A. Laurinčikas

Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
Full-text PDF (207 kB) Citations (9)
References:
Abstract: It is proved that a wide class of analytic functions can be approximated by shifts $\zeta(s+i\varphi(k))$, $k\geqslant k_0$, $k\in\mathbb N$, of the Riemann zeta-function. Here the function $\varphi(t)$ has a continuous nonvanishing derivative on $[k_0,\infty)$ satisfying the estimate $\varphi(2t)\max_{t\leqslant u\leqslant2t}(\varphi'(u))^{-1}\ll t$, and the sequence $\{a\varphi(k)\colon k\geqslant k_0\}$ with every real $a\neq0$ is uniformly distributed modulo 1. Examples of $\varphi(t)$ are given.
Keywords: Riemann zeta-function, uniform distribution modulo 1, universality, weak convergence.
Received: 26.11.2016
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 1, Pages 103–110
DOI: https://doi.org/10.1090/spmj/1532
Bibliographic databases:
Document Type: Article
MSC: 11M06
Language: English
Citation: A. Laurinčikas, “Discrete universality of the Riemann zeta-function and uniform distribution modulo 1”, Algebra i Analiz, 30:1 (2018), 139–150; St. Petersburg Math. J., 30:1 (2019), 103–110
Citation in format AMSBIB
\Bibitem{Lau18}
\by A.~Laurin{\v{c}}ikas
\paper Discrete universality of the Riemann zeta-function and uniform distribution modulo~1
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 1
\pages 139--150
\mathnet{http://mi.mathnet.ru/aa1574}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3790747}
\elib{https://elibrary.ru/item.asp?id=32234333}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 1
\pages 103--110
\crossref{https://doi.org/10.1090/spmj/1532}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452220200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061800572}
Linking options:
  • https://www.mathnet.ru/eng/aa1574
  • https://www.mathnet.ru/eng/aa/v30/i1/p139
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :31
    References:27
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024