Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 299, Pages 155–169
DOI: https://doi.org/10.1134/S0371968517040100
(Mi tm3828)
 

This article is cited in 4 scientific papers (total in 4 papers)

Discrete universality in the Selberg class

A. Laurinčikasa, R. Macaitienėbc

a Faculty of Mathematics and Informatics, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania
b Šiauliai University, Vilnius str. 88, 76285 Šiauliai, Lithuania
c Šiauliai State College, Aušros av. 40, 76241 Šiauliai, Lithuania
Full-text PDF (234 kB) Citations (4)
References:
Abstract: The Selberg class $\mathcal S$ consists of functions $L(s)$ that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in $\mathcal S$ that satisfy the mean value condition on primes are universal in the sense of Voronin, i.e., every function in a sufficiently wide class of analytic functions can be approximated by the shifts $L(s+i\tau )$, $\tau \in \mathbb R$. In this paper we show that every function in the same class of analytic functions can be approximated by the discrete shifts $L(s+ikh)$, $k=0,1,\dots $, where $h>0$ is an arbitrary fixed number.
Keywords: Selberg class, limit theorem, weak convergence, universality.
Received: October 1, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 299, Pages 143–156
DOI: https://doi.org/10.1134/S0081543817080107
Bibliographic databases:
Document Type: Article
UDC: 519.14+511.331
Language: Russian
Citation: A. Laurinčikas, R. Macaitienė, “Discrete universality in the Selberg class”, Analytic number theory, On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba, Trudy Mat. Inst. Steklova, 299, MAIK Nauka/Interperiodica, Moscow, 2017, 155–169; Proc. Steklov Inst. Math., 299 (2017), 143–156
Citation in format AMSBIB
\Bibitem{LauMac17}
\by A.~Laurin{\v{c}}ikas, R.~Macaitien{\.e}
\paper Discrete universality in the Selberg class
\inbook Analytic number theory
\bookinfo On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 299
\pages 155--169
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3828}
\crossref{https://doi.org/10.1134/S0371968517040100}
\elib{https://elibrary.ru/item.asp?id=32543415}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 299
\pages 143--156
\crossref{https://doi.org/10.1134/S0081543817080107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425317900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042163833}
Linking options:
  • https://www.mathnet.ru/eng/tm3828
  • https://doi.org/10.1134/S0371968517040100
  • https://www.mathnet.ru/eng/tm/v299/p155
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:262
    Full-text PDF :36
    References:44
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024