Abstract:
Under consideration is a Dirichlet series depending on a parameter and absolutely convergent in the right half of the critical strip. We prove that the set of shifts of the series approximating a prescribed analytic function without zeros has positive density on the intervals of type [T,T+H], where T1/3(logT)26/15≤H≤T, and give this density explicitly.
Keywords:
Riemann ζ-function, Haar measure, space of analytic functions, universality.
The research was funded by the European Social Fund according to the activity “Improvement of Researchers’
Qualification by Implementing World-Class R&D Projects” (Grant 09.3.3–LMT–K–712–01–0037).
Citation:
A. Laurinčikas, “The universality of an absolutely convergent series on short intervals”, Sibirsk. Mat. Zh., 62:6 (2021), 1330–1338; Siberian Math. J., 62:6 (2021), 1076–1083
\Bibitem{Lau21}
\by A.~Laurin{\v{c}}ikas
\paper The universality of an absolutely convergent series on short intervals
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 6
\pages 1330--1338
\mathnet{http://mi.mathnet.ru/smj7631}
\crossref{https://doi.org/10.33048/smzh.2021.62.609}
\elib{https://elibrary.ru/item.asp?id=47814206}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 6
\pages 1076--1083
\crossref{https://doi.org/10.1134/S0037446621060094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000723707400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120176832}
Linking options:
https://www.mathnet.ru/eng/smj7631
https://www.mathnet.ru/eng/smj/v62/i6/p1330
This publication is cited in the following 1 articles:
Aidas Balčiūnas, Mindaugas Jasas, Audronė Rimkevičienė, “A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS”, Mathematical Modelling and Analysis, 29:2 (2024), 331