Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 3, Pages 400–411
DOI: https://doi.org/10.4213/mzm12362
(Mi mzm12362)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a Generalization of Voronin's Theorem

A. Laurinčikas

Mathematical Institute, Vilnius University, Lithuania
Full-text PDF (504 kB) Citations (1)
References:
Abstract: Voronin's theorem states that the Riemann zeta-function $\zeta(s)$ is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts $\zeta(s+i\tau)$, $\tau \in \mathbb{R}$. Some results on the approximation by the shifts $\zeta(s+i\varphi(\tau))$ with some function $\varphi(\tau)$ are also known. In this paper, it is established that an analytic function without zeros in the strip $1/2+1/(2\alpha)<\operatorname{Re} s<1$ can be approximated by the shifts $\zeta(s+i\log^\alpha \tau)$ with $\alpha >1$.
Keywords: Riemann zeta-function, limit theorem, Voronin's theorem, universality.
Funding agency Grant number
ESF - European Social Fund 09.3.3-LMT-K-712-01-0037
The research is funded by the European Social Fund according to the activity “Improvement of Researchers' qualification by implementing world-class R&D projects” of Measure No. 09.3.3-LMT-K-712-01-0037.
Received: 20.02.2019
Revised: 02.04.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 3, Pages 442–451
DOI: https://doi.org/10.1134/S0001434620030086
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: A. Laurinčikas, “On a Generalization of Voronin's Theorem”, Mat. Zametki, 107:3 (2020), 400–411; Math. Notes, 107:3 (2020), 442–451
Citation in format AMSBIB
\Bibitem{Lau20}
\by A.~Laurin{\v{c}}ikas
\paper On a Generalization of Voronin's Theorem
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 3
\pages 400--411
\mathnet{http://mi.mathnet.ru/mzm12362}
\crossref{https://doi.org/10.4213/mzm12362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070861}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 3
\pages 442--451
\crossref{https://doi.org/10.1134/S0001434620030086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083856944}
Linking options:
  • https://www.mathnet.ru/eng/mzm12362
  • https://doi.org/10.4213/mzm12362
  • https://www.mathnet.ru/eng/mzm/v107/i3/p400
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :52
    References:45
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024