|
This article is cited in 2 scientific papers (total in 2 papers)
A limit theorem for the Riemann zeta-function close to the critical line
A. P. Laurincikas
Abstract:
It is shown that as $T\to\infty$ the distribution function
$$
\frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|^\frac{1}{\sqrt{2^{-1}\ln\ln T}}<x\}
$$
approaches the distribution function of the logarithmic normal distribution. Here $\operatorname{mes}\{A\}$ is the Lebesgue measure of the set $A$, and
$$
\sigma_T=\frac12+\frac{\sqrt{\ln\ln T}\psi(T)}{\ln T},
$$
where $\psi(T)\to\infty$ and $\ln\psi(T)=o(\ln\ln T)$ as $T\to\infty$.
Bibliography: 11 titles.
Received: 01.08.1986
Citation:
A. P. Laurincikas, “A limit theorem for the Riemann zeta-function close to the critical line”, Math. USSR-Sb., 63:1 (1989), 1–9
Linking options:
https://www.mathnet.ru/eng/sm1683https://doi.org/10.1070/SM1989v063n01ABEH003255 https://www.mathnet.ru/eng/sm/v177/i1/p3
|
|