|
This article is cited in 4 scientific papers (total in 4 papers)
On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
M. Jasasa, A. Laurinčikasa, D. Šiaučiūnasb a Institute of Data Science and Digital Technologies, Vilnius University, Vilnius
b Institute for Regional Development, Šiauliai Academy, Vilnius University
Abstract:
A theorem dealing with the approximation of analytic functions in the strip $\{s\in \mathbb{C}: 1/2< \operatorname{Re} s<1\}$ by shifts of an absolutely convergent Dirichlet series close to a periodic zeta-function with multiplicative coefficients is proved.
Keywords:
periodic zeta-function, weak convergence, Voronin universality theorem.
Received: 25.10.2020 Revised: 17.01.2021
Citation:
M. Jasas, A. Laurinčikas, D. Šiaučiūnas, “On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series”, Mat. Zametki, 109:6 (2021), 832–841; Math. Notes, 109:6 (2021), 876–883
Linking options:
https://www.mathnet.ru/eng/mzm12939https://doi.org/10.4213/mzm12939 https://www.mathnet.ru/eng/mzm/v109/i6/p832
|
Statistics & downloads: |
Abstract page: | 245 | Full-text PDF : | 27 | References: | 35 | First page: | 21 |
|