Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 77–90
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000419
(Mi im419)
 

This article is cited in 21 scientific papers (total in 21 papers)

The universality of $L$-functions associated with new forms

A. P. Laurincikas, K. Matsumoto, J. Steuding
References:
Abstract: We prove the universality theorem for $L$-functions of new parabolic forms. It concerns the uniform approximation of analytic functions by shifts of these $L$-functions. This theorem together with the Shimura–Taniyama conjecture (now proved) yields the universality of $L$-functions of non-singular elliptic curves over the field of rational numbers. The universality of $L$-functions implies that they are functionally independent.
Received: 28.02.2002
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2003, Volume 67, Issue 1, Pages 83–98
DOI: https://doi.org/10.4213/im419
Bibliographic databases:
UDC: 511
MSC: 11F66, 11M41, 11K99
Language: English
Original paper language: Russian
Citation: A. P. Laurincikas, K. Matsumoto, J. Steuding, “The universality of $L$-functions associated with new forms”, Izv. RAN. Ser. Mat., 67:1 (2003), 83–98; Izv. Math., 67:1 (2003), 77–90
Citation in format AMSBIB
\Bibitem{LauMatSte03}
\by A.~P.~Laurincikas, K.~Matsumoto, J.~Steuding
\paper The universality of $L$-functions associated with new forms
\jour Izv. RAN. Ser. Mat.
\yr 2003
\vol 67
\issue 1
\pages 83--98
\mathnet{http://mi.mathnet.ru/im419}
\crossref{https://doi.org/10.4213/im419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957917}
\zmath{https://zbmath.org/?q=an:1112.11026}
\transl
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 77--90
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000419}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748505473}
Linking options:
  • https://www.mathnet.ru/eng/im419
  • https://doi.org/10.1070/IM2003v067n01ABEH000419
  • https://www.mathnet.ru/eng/im/v67/i1/p83
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:558
    Russian version PDF:213
    English version PDF:18
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024