Abstract:
In 2007, H. Mishou obtained a joint universality theorem for the Riemann zeta-function $\zeta (s)$ and the Hurwitz zeta-function $\zeta (s,\alpha )$ with transcendental parameter $\alpha $. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts $\zeta (s+i\tau )$ and $\zeta (s+i\tau ,\alpha )$, $\tau \in \mathbb R$. In 2015, E. Buivydas and the author established a version of this theorem in which the approximation is performed by the discrete shifts $\zeta (s+ikh)$ and $\zeta (s+ikh,\alpha )$, $h>0$, $k=0,1,2\dots {}\kern 1pt$. In the present study, we prove joint universality for the functions $\zeta (s)$ and $\zeta (s,\alpha )$ in the sense of approximation of a pair of analytic functions by the shifts $\zeta (s+ik^\beta h)$ and $\zeta (s+ik^\beta h,\alpha )$ with fixed $0<\beta <1$.
Citation:
A. Laurinčikas, “A discrete version of the Mishou theorem. II”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 181–191; Proc. Steklov Inst. Math., 296 (2017), 172–182
\Bibitem{Lau17}
\by A.~Laurin{\v{c}}ikas
\paper A discrete version of the Mishou theorem. II
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 181--191
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3775}
\crossref{https://doi.org/10.1134/S0371968517010149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3640782}
\elib{https://elibrary.ru/item.asp?id=28905730}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 172--182
\crossref{https://doi.org/10.1134/S008154381701014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400278600014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017980273}
Linking options:
https://www.mathnet.ru/eng/tm3775
https://doi.org/10.1134/S0371968517010149
https://www.mathnet.ru/eng/tm/v296/p181
This publication is cited in the following 8 articles: