Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 296, Pages 181–191
DOI: https://doi.org/10.1134/S0371968517010149
(Mi tm3775)
 

This article is cited in 8 scientific papers (total in 8 papers)

A discrete version of the Mishou theorem. II

A. Laurinčikas

Department of Mathematical Computer Science, Vilnius University
Full-text PDF (209 kB) Citations (8)
References:
Abstract: In 2007, H. Mishou obtained a joint universality theorem for the Riemann zeta-function $\zeta (s)$ and the Hurwitz zeta-function $\zeta (s,\alpha )$ with transcendental parameter $\alpha $. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts $\zeta (s+i\tau )$ and $\zeta (s+i\tau ,\alpha )$, $\tau \in \mathbb R$. In 2015, E. Buivydas and the author established a version of this theorem in which the approximation is performed by the discrete shifts $\zeta (s+ikh)$ and $\zeta (s+ikh,\alpha )$, $h>0$, $k=0,1,2\dots {}\kern 1pt$. In the present study, we prove joint universality for the functions $\zeta (s)$ and $\zeta (s,\alpha )$ in the sense of approximation of a pair of analytic functions by the shifts $\zeta (s+ik^\beta h)$ and $\zeta (s+ik^\beta h,\alpha )$ with fixed $0<\beta <1$.
Received: January 26, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 296, Pages 172–182
DOI: https://doi.org/10.1134/S008154381701014X
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: A. Laurinčikas, “A discrete version of the Mishou theorem. II”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 181–191; Proc. Steklov Inst. Math., 296 (2017), 172–182
Citation in format AMSBIB
\Bibitem{Lau17}
\by A.~Laurin{\v{c}}ikas
\paper A discrete version of the Mishou theorem. II
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 181--191
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3775}
\crossref{https://doi.org/10.1134/S0371968517010149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3640782}
\elib{https://elibrary.ru/item.asp?id=28905730}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 172--182
\crossref{https://doi.org/10.1134/S008154381701014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400278600014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017980273}
Linking options:
  • https://www.mathnet.ru/eng/tm3775
  • https://doi.org/10.1134/S0371968517010149
  • https://www.mathnet.ru/eng/tm/v296/p181
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :35
    References:52
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024