Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Shishkin, Grigorii Ivanovich

Statistics Math-Net.Ru
Total publications: 132
Scientific articles: 132

Number of views:
This page:5886
Abstract pages:48341
Full texts:16100
References:5595
Head Scientist Researcher
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person31539
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/190681

Publications in Math-Net.Ru Citations
2023
1. G. I. Shishkin, L. P. Shishkina, “An improved difference scheme for the Cauchy problem in the case of a transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023),  1272–1278  mathnet  elib; Comput. Math. Math. Phys., 63:8 (2023), 1401–1407
2022
2. G. I. Shishkin, L. P. Shishkina, “A difference scheme of the decomposition method for an initial boundary value problem for the singularly perturbed transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022),  1224–1232  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 62:7 (2022), 1193–1201 2
3. G. I. Shishkin, L. P. Shishkina, “Erratum to: Monotone decomposition of the Cauchy problem for a hyperbolic equation based on transport equations”, Comput. Math. Math. Phys., 62:4 (2022), 700  mathnet  mathscinet  scopus
4. G. I. Shishkin, L. P. Shishkina, “Monotone decomposition of the Cauchy problem for a hyperbolic equation based on transport equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022),  442–450  mathnet  elib; Comput. Math. Math. Phys., 62:3 (2022), 432–440  isi  scopus
2017
5. G. I. Shishkin, “Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1824–1830  mathnet  elib; Comput. Math. Math. Phys., 57:11 (2017), 1789–1795  isi  scopus 8
6. G. I. Shishkin, “Computer difference scheme for a singularly perturbed elliptic convection-diffusion equation in the presence of perturbations”, Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017),  814–831  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 57:5 (2017), 815–832  isi  scopus 1
2016
7. G. I. Shishkin, “Computer difference scheme for a singularly perturbed reaction-diffusion equation in the presence of perturbations”, Model. Anal. Inform. Sist., 23:5 (2016),  577–586  mathnet  mathscinet  elib
2015
8. G. I. Shishkin, L. P. Shishkina, “Difference scheme of highest accuracy order for a singularly perturbed reaction-diffusion equation based on the solution decomposition method”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  280–293  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 262–275  isi  scopus 2
9. G. I. Shishkin, “Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations”, Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015),  1876–1892  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:11 (2015), 1842–1856  isi  elib  scopus 3
10. G. I. Shishkin, L. P. Shishkina, “A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  393–416  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 55:3 (2015), 386–409  isi  elib  scopus 1
2014
11. G. I. Shishkin, L. P. Shishkina, “A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  322–333  mathnet  mathscinet  elib 1
12. G. I. Shishkin, “Computer difference scheme for a singularly perturbed convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014),  1256–1269  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 54:8 (2014), 1221–1233  isi  elib  scopus 3
2013
13. G. I. Shishkin, “Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013),  575–599  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 53:4 (2013), 431–454  isi  elib  scopus 4
2012
14. G. I. Shishkin, “Conditioning of a difference scheme of the solution decomposition method for a singularly perturbed convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  291–304  mathnet  elib 6
15. G. I. Shishkin, “Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012),  1010–1041  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:6 (2012), 895–925  isi  elib  scopus
2011
16. G. I. Shishkin, “A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 51:10 (2011),  1816–1839  mathnet  mathscinet; Comput. Math. Math. Phys., 51:10 (2011), 1705–1728  isi  scopus 1
17. G. I. Shishkin, L. P. Shishkina, “Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1091–1120  mathnet  mathscinet; Comput. Math. Math. Phys., 51:6 (2011), 1020–1049  isi  scopus 4
2010
18. G. I. Shishkin, L. P. Shishkina, “Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  255–271  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S197–S214  isi  scopus 10
19. G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2113–2133  mathnet; Comput. Math. Math. Phys., 50:12 (2010), 2003–2022  scopus 16
20. G. I. Shishkin, L. P. Shishkina, “A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  665–678  mathnet  mathscinet; Comput. Math. Math. Phys., 50:4 (2010), 633–645  isi  scopus 1
21. G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010),  458–478  mathnet  mathscinet; Comput. Math. Math. Phys., 50:3 (2010), 437–456  isi  scopus 11
2009
22. G. I. Shishkin, “Approximation of singularly perturbed parabolic equations in unbounded domains subject to piecewise smooth boundary conditions in the case of solutions that grow at infinity”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1827–1843  mathnet; Comput. Math. Math. Phys., 49:10 (2009), 1748–1764  isi  scopus
23. G. I. Shishkin, “The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition”, Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009),  1416–1436  mathnet  zmath; Comput. Math. Math. Phys., 49:8 (2009), 1348–1368  isi  scopus 10
24. G. I. Shishkin, L. P. Shishkina, “Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry”, Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009),  840–856  mathnet  zmath  elib; Comput. Math. Math. Phys., 49:5 (2009), 810–826  isi  elib  scopus 1
2008
25. I. V. Tselischeva, G. I. Shishkin, “Sequential and parallel domain decomposition methods for a singularly perturbed parabolic convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:1 (2008),  202–220  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S206–S227  isi  scopus 1
26. G. I. Shishkin, “Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: $\varepsilon$-uniformly convergent schemes”, Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  1014–1033  mathnet  zmath; Comput. Math. Math. Phys., 48:6 (2008), 956–974  isi  scopus 7
27. G. I. Shishkin, “Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  813–830  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 48:5 (2008), 769–785  isi  scopus 9
28. G. I. Shishkin, L. P. Shishkina, “Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle”, Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008),  660–673  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 48:4 (2008), 627–640  isi  scopus 6
2007
29. G. I. Shishkin, “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  218–233  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S213–S230  scopus 8
30. G. I. Shishkin, “Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  146–172  mathnet
31. G. I. Shishkin, “Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 47:10 (2007),  1706–1726  mathnet  mathscinet; Comput. Math. Math. Phys., 47:10 (2007), 1636–1655  scopus 8
32. G. I. Shishkin, “Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters”, Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  835–866  mathnet  mathscinet; Comput. Math. Math. Phys., 47:5 (2007), 797–828  scopus 11
33. S. Li, G. I. Shishkin, L. P. Shishkina, “Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data”, Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007),  460–480  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 47:3 (2007), 442–462  scopus 12
2006
34. G. I. Shishkin, “Richardson's method for increasing the accuracy of difference solutions of singularly perturbed elliptic convection-diffusion equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 2,  57–71  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 50:2 (2006), 57–71 8
35. G. I. Shishkin, “Higher-order accurate method for a quasilinear singularly perturbed elliptic convection-diffusion equation”, Sib. Zh. Vychisl. Mat., 9:1 (2006),  81–108  mathnet  zmath 5
36. G. I. Shishkin, “Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  2045–2064  mathnet  mathscinet; Comput. Math. Math. Phys., 46:11 (2006), 1953–1971  scopus 3
37. G. I. Shishkin, “The use of solutions on embedded grids for the approximation of singularly perturbed parabolic convection-diffusion equations on adapted grids”, Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006),  1617–1637  mathnet  mathscinet; Comput. Math. Math. Phys., 46:9 (2006), 1539–1559  scopus 10
38. G. I. Shishkin, “Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side”, Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006),  407–420  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:3 (2006), 388–401  scopus 5
39. G. I. Shishkin, “A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 46:2 (2006),  242–261  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:2 (2006), 231–250  scopus
40. G. I. Shishkin, “Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  52–76  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:1 (2006), 49–72  scopus 15
2005
41. G. I. Shishkin, L. P. Shishkina, “A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation”, Differ. Uravn., 41:7 (2005),  980–989  mathnet  mathscinet; Differ. Equ., 41:7 (2005), 1030–1039 23
42. G. I. Shishkin, “A domain decomposition method in the case of nonoverlapping subdomains for a singularly perturbed convection-diffusion equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2,  62–73  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 49:2 (2005), 58–70 1
43. G. I. Shishkin, “On an adaptive grid method for singularly perturbed elliptic reaction-diffusion equations in a domain with a curvilinear boundary”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 1,  73–88  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 49:1 (2005), 69–83 3
44. G. I. Shishkin, “Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries”, Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1196–1212  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:7 (2005), 1155–1171 3
45. G. I. Shishkin, “Grid approximation in a half plane for singularly perturbed elliptic equations with convective terms that grow at infinity”, Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  298–314  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 45:2 (2005), 285–301  elib 3
46. G. I. Shishkin, “Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  110–125  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 45:1 (2005), 104–119  elib 13
2004
47. P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “High-order accurate decomposition of the Richardson method for a singularly perturbed elliptic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  329–337  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:2 (2004), 309–316 15
2003
48. G. I. Shishkin, “Numerical methods on adaptive grids for singularly perturbed elliptic equations in a domain with a curvilinear boundary”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 1,  74–85  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 47:1 (2003), 72–83 1
49. P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions”, Matem. Mod., 15:8 (2003),  99–112  mathnet  mathscinet  zmath
50. G. I. Shishkin, “Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source”, Matem. Mod., 15:2 (2003),  43–61  mathnet  mathscinet  zmath 2
51. G. I. Shishkin, “An improved piecewise uniform mesh for a singularly perturbed elliptic reaction-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003),  172–179  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 2, S138–S147 2
52. G. I. Shishkin, “Grid approximation of improved convergence order for a singularly perturbed elliptic convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003),  165–182  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S184–S202 4
53. G. I. Shishkin, “The grid approximation of a singularly perturbed parabolic equation on a composed domain with a moving boundary containing a concentrated source”, Zh. Vychisl. Mat. Mat. Fiz., 43:12 (2003),  1806–1824  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:12 (2003), 1738–1755 8
54. G. I. Shishkin, “Approximation of solutions and derivative of singularly perturbed elliptic equation of convection-diffusion”, Zh. Vychisl. Mat. Mat. Fiz., 43:5 (2003),  672–689  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:5 (2003), 641–657 2
55. G. I. Shishkin, “The Schwarz grid method for singularly perturbed convection-diffusion parabolic equations in the case of coherent and incoherent grids on subdomains”, Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003),  251–264  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 43:2 (2003), 242–254
2002
56. G. I. Shishkin, “Piecewise-uniform grids, optimal with respect to the order of convergence, for singularly perturbed convection-diffusion equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 3,  60–72  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 46:3 (2002), 56–68
57. G. I. Shishkin, “Grid approximations with an improved rate of convergence for singularly perturbed elliptic equations in domains with characteristic boundaries”, Sib. Zh. Vychisl. Mat., 5:1 (2002),  71–92  mathnet  zmath 11
58. G. I. Shishkin, “Grid approximation of a singularly perturbed parabolic reaction-diffusion equation with a fast-moving source”, Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  823–836  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:6 (2002), 788–801 2
2001
59. G. I. Shishkin, “Grid Approximations to Singularly Perturbed Parabolic Equations with Turning Points”, Differ. Uravn., 37:7 (2001),  987–999  mathnet  mathscinet; Differ. Equ., 37:7 (2001), 1037–1050 4
60. G. I. Shishkin, “A Grid Approximation to the Transport Equation in the Problem on a Flow Past a Flat Plate at Large Reynolds Numbers”, Differ. Uravn., 37:3 (2001),  415–424  mathnet  mathscinet; Differ. Equ., 37:3 (2001), 444–453 1
61. G. I. Shishkin, “Grid approximation of a wave equation singularly perturbed with respect to the space variable”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 1,  67–81  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 45:1 (2001), 63–77
62. G. I. Shishkin, “The method of total approximation for singularly perturbed elliptic equations with convective terms”, Matem. Mod., 13:4 (2001),  95–108  mathnet  mathscinet  zmath
63. G. I. Shishkin, “Approximation of singularly perturbed reaction-diffusion equations on adaptive meshes”, Matem. Mod., 13:3 (2001),  103–118  mathnet  mathscinet  zmath 12
64. A. A. Samarskii, V. I. Mazhukin, P. P. Matus, G. I. Shishkin, “Monotone difference schemes for equations with mixed derivative”, Matem. Mod., 13:2 (2001),  17–26  mathnet  mathscinet  zmath 4
65. G. I. Shishkin, “A decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions”, Sib. Zh. Vychisl. Mat., 4:1 (2001),  85–106  mathnet  zmath
66. G. I. Shishkin, “Mesh approximation of singularly perturbed equations with convective terms for the perturbation of data”, Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001),  692–707  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 41:5 (2001), 649–664 8
67. G. I. Shishkin, “Grid approximation of the solution to the Blasius equation and of its derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  39–56  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 41:1 (2001), 37–54 2
2000
68. P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “Distributing the numerical solution of parabolic singularly perturbed problems with defect correction over independent processes”, Sib. Zh. Vychisl. Mat., 3:3 (2000),  229–258  mathnet  zmath 2
69. G. I. Shishkin, “Approximation of systems of convection-diffusion elliptic equations with parabolic boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1648–1661  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:11 (2000), 1582–1595 2
70. G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems on locally condensing grids: Convection-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz., 40:5 (2000),  714–725  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:5 (2000), 680–691 6
1999
71. G. I. Shishkin, “Optimization of piecewise-uniform grids for singularly perturbed equations of reaction-diffusion type”, Differ. Uravn., 35:7 (1999),  990–997  mathnet  mathscinet; Differ. Equ., 35:7 (1999), 1000–1007
72. G. I. Shishkin, “Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms”, Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5,  81–93  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 43:5 (1999), 77–89 2
73. G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems on locally refined meshes. Reaction-diffusion equations”, Matem. Mod., 11:12 (1999),  87–104  mathnet  mathscinet  zmath 5
74. G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems in a nonconvex domain with a piecewise smooth boundary”, Matem. Mod., 11:11 (1999),  75–90  mathnet  mathscinet  zmath 4
75. G. I. Shishkin, “Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms”, Zh. Vychisl. Mat. Mat. Fiz., 39:2 (1999),  262–279  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:2 (1999), 249–265
1998
76. G. I. Shishkin, “Grid approximation of singularly perturbed systems of elliptic and parabolic equations with convective terms”, Differ. Uravn., 34:12 (1998),  1686–1696  mathnet  mathscinet; Differ. Equ., 34:12 (1998), 1693–1704 2
77. G. I. Shishkin, “Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow”, Sib. Zh. Vychisl. Mat., 1:3 (1998),  281–297  mathnet  mathscinet  zmath 2
78. G. I. Shishkin, “Finite-difference approximations for singularly perturbed elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 38:12 (1998),  1989–2001  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 38:12 (1998), 1909–1921 8
79. G. I. Shishkin, “Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall”, Zh. Vychisl. Mat. Mat. Fiz., 38:11 (1998),  1844–1859  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 38:11 (1998), 1768–1782
80. G. I. Shishkin, “A grid approximation for the Riemann problem in the case of the Burgers equation”, Zh. Vychisl. Mat. Mat. Fiz., 38:8 (1998),  1418–1420  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 38:8 (1998), 1361–1363 1
1997
81. G. I. Shishkin, I. V. Tselischeva, “The decomposition method for singularly perturbed boundary value problems with the local perturbation of the initial conditions. Equations with convective terms”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 4,  98–107  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 41:4 (1997), 96–105 2
82. G. I. Shishkin, “Singularly perturbed boundary value problems with concentrated sources and discontinuous initial conditions”, Zh. Vychisl. Mat. Mat. Fiz., 37:4 (1997),  429–446  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 37:4 (1997), 417–434 12
83. G. I. Shishkin, “Grid approximation of a singularly perturbed Neumann problem for parabolic equations in the case of a discontinuous boundary function”, Zh. Vychisl. Mat. Mat. Fiz., 37:3 (1997),  378–381  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 37:3 (1997), 370–373
1996
84. G. I. Shishkin, “Grid approximation of singularly perturbed equations with convective terms in the case of mixed boundary conditions”, Differ. Uravn., 32:5 (1996),  689–701  mathnet  mathscinet; Differ. Equ., 32:5 (1996), 698–711
85. G. I. Shishkin, “Grid approximation of singularly perturbed quasi-linear elliptic equations in a case of multiple solutions of the reduced equation”, Matem. Mod., 8:7 (1996),  109–127  mathnet  mathscinet  zmath
86. G. I. Shishkin, I. V. Tselischeva, “Parallel methods of solving singularly perturbed boundary value problems for elliptic equations”, Matem. Mod., 8:3 (1996),  111–127  mathnet  mathscinet  zmath
87. G. I. Shishkin, “Approximation of the solutions and diffusion flows of singularly perturbed boundary-value problems with discontinuous initial conditions”, Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996),  83–104  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:9 (1996), 1233–1250  isi 9
88. G. I. Shishkin, “Grid approximation of parabolic equations with singular initial conditions”, Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996),  73–92  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:3 (1996), 341–356  isi 1
89. G. I. Shishkin, “Locally one-dimensional difference schemes for singularly perturbed parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 36:2 (1996),  42–61  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:2 (1996), 165–180  isi
1995
90. G. I. Shishkin, “A difference scheme for the problem of the decay of a discontinuity in the case of the viscous Burgers equation”, Dokl. Akad. Nauk, 342:3 (1995),  313–317  mathnet  mathscinet  zmath
91. P. N. Vabishchevich, G. I. Shishkin, “Difference schemes on locally condensing grids”, Differ. Uravn., 31:7 (1995),  1179–1183  mathnet  mathscinet  zmath; Differ. Equ., 31:7 (1995), 1121–1126 1
92. G. I. Shishkin, “Grid approximation of quasi-linear singularly perturbed elliptic and parabolic equations with mixed boundary conditions”, Matem. Mod., 7:10 (1995),  111–126  mathnet  mathscinet  zmath
93. G. I. Shishkin, “A problem for grid approximation of the diffusion flow in numerical modelling of pollution transport”, Matem. Mod., 7:7 (1995),  61–80  mathnet  mathscinet  zmath 1
94. I. V. Pershin, V. A. Titov, G. I. Shishkin, “Experimental evaluation of the order of uniform convergence for special difference schemes”, Matem. Mod., 7:6 (1995),  85–94  mathnet  zmath
95. G. I. Shishkin, “Grid approximation of boundary value problems for singularly perturbed quasi-linear elliptic equations with interior layer”, Matem. Mod., 7:2 (1995),  72–88  mathnet  mathscinet  zmath
96. G. I. Shishkin, “Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 35:4 (1995),  542–564  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 35:4 (1995), 429–446  isi 9
1994
97. G. I. Shishkin, “Grid approximation of boundary value problems for singularly perturbed quasilinear elliptic equations in the case of limit equations that are degenerate on the boundary”, Differ. Uravn., 30:7 (1994),  1244–1258  mathnet  mathscinet; Differ. Equ., 30:7 (1994), 1152–1166
98. G. I. Shishkin, “Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer”, Matem. Mod., 6:5 (1994),  105–121  mathnet  mathscinet  zmath
99. G. I. Shishkin, “The method of additive separation of singularities for quasilinear singularly perturbed elliptic and parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 34:12 (1994),  1793–1814  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:12 (1994), 1541–1558  isi
100. G. I. Shishkin, “A grid approximation of singularly perturbed quasilinear elliptic and parabolic equations which degenerate into equations without spatial derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994),  1632–1651  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:11 (1994), 1403–1419  isi
101. G. I. Shishkin, “A grid approximation of the method of additive separation of singularities for a singularly perturbed equation of parabolic type”, Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  720–738  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:5 (1994), 621–637  isi
1993
102. G. I. Shishkin, “Grid approximation of the Dirichlet problem for a singularly perturbed quasilinear parabolic equation with a transition layer”, Dokl. Akad. Nauk, 332:4 (1993),  424–427  mathnet  mathscinet  zmath; Dokl. Math., 48:2 (1994), 346–352
103. G. I. Shishkin, “Grid approximation of a singularly perturbed quasilinear equation with a transition layer”, Dokl. Akad. Nauk, 328:3 (1993),  299–302  mathnet  mathscinet  zmath; Dokl. Math., 47:1 (1993), 83–88
104. G. I. Shishkin, “Mesh approximation of singularly perturbed quasilinear elliptic equations which degenerate to a zero-order equation”, Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993),  1305–1323  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 33:9 (1993), 1155–1170  isi
105. G. I. Shishkin, “Lattice approximation of singularly perturbed degenerate elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993),  541–560  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 33:4 (1993), 493–509  isi
1992
106. V. E. Tret'yakov, I. V. Tselischeva, G. I. Shishkin, “The optimal control of systems with incomplete and incorrect information”, Trudy Inst. Mat. i Mekh. UrO RAN, 2 (1992),  176–187  mathnet  mathscinet  zmath  elib
107. G. I. Shishkin, “A difference scheme for a singularly perturbed parabolic equation degenerating on the boundary”, Zh. Vychisl. Mat. Mat. Fiz., 32:5 (1992),  717–732  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 32:5 (1992), 621–636  isi
108. G. I. Shishkin, “A difference approximation of a singularly perturbed boundary-value problem for quasilinear elliptic equations degenerating into first-order equations”, Zh. Vychisl. Mat. Mat. Fiz., 32:4 (1992),  550–566  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 32:4 (1992), 467–480  isi 15
1991
109. G. I. Shishkin, “Difference approximation of a singularly perturbed quasilinear elliptic equation that degenerates into a first-order equation”, Dokl. Akad. Nauk SSSR, 317:4 (1991),  845–849  mathnet  mathscinet  zmath; Dokl. Math., 43:2 (1991), 562–566 2
110. V. A. Titov, G. I. Shishkin, V. V. Yakovlev, A. P. Khripunov, I. V. Pershin, “The mathematical modelling of hydrogen diffusion process in welding joints with inclusions”, Matem. Mod., 3:3 (1991),  27–35  mathnet
111. G. I. Shishkin, “Grid approximation of a singularly perturbed boundary-value problem for a quasi-linear elliptic equation in the completely degenerate case”, Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991),  1808–1825  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 31:12 (1991), 33–46  isi 19
112. G. I. Shishkin, “A grid approximation of singularly perturbed parabolic equations degenerate on the boundary”, Zh. Vychisl. Mat. Mat. Fiz., 31:10 (1991),  1498–1511  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 31:10 (1991), 53–63  isi 2
1989
113. G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with discontinuous coefficients and concentrated factors”, Zh. Vychisl. Mat. Mat. Fiz., 29:9 (1989),  1277–1290  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 29:5 (1989), 9–19 13
114. G. I. Shishkin, “Approximation of solutions of singularly perturbed boundary value problems with a parabolic boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 29:7 (1989),  963–977  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 29:4 (1989), 1–10 87
1988
115. G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with a discontinuous initial condition”, Dokl. Akad. Nauk SSSR, 300:5 (1988),  1066–1070  mathnet  mathscinet  zmath; Dokl. Math., 37:3 (1988), 792–796 10
116. G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 28:11 (1988),  1649–1662  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 28:6 (1988), 32–41 45
1987
117. G. I. Shishkin, “Approximation of the solutions of singularly perturbed boundary value problems with a corner boundary layer”, Dokl. Akad. Nauk SSSR, 296:1 (1987),  39–43  mathnet  mathscinet  zmath; Dokl. Math., 36:2 (1988), 240–244 2
118. G. I. Shishkin, “Approximation of solutions of singularly perturbed boundary-value problems with a corner boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987),  1360–1374  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 27:5 (1987), 54–63 12
1986
119. G. I. Shishkin, “A difference scheme for an elliptic equation with a small parameter multiplying the highest derivatives”, Dokl. Akad. Nauk SSSR, 286:1 (1986),  57–61  mathnet  mathscinet  zmath 1
120. G. I. Shishkin, “Solution of a boundary value problem for an elliptic equation with small parameter multiplying the highest derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 26:7 (1986),  1019–1031  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 26:4 (1986), 38–46 8
1985
121. G. I. Shishkin, “A difference scheme for a fourth-order elliptic equation with a small parameter multiplying the derivatives”, Differ. Uravn., 21:12 (1985),  2159–2165  mathnet  mathscinet
122. G. I. Shishkin, “A difference scheme for a fourth-order ordinary differential equation with a small parameter multiplying the highest derivative”, Differ. Uravn., 21:10 (1985),  1734–1742  mathnet  mathscinet
1984
123. G. I. Shishkin, “A difference scheme for a fourth-order differential equation with a small parameter multiplying the highest derivative”, Dokl. Akad. Nauk SSSR, 275:6 (1984),  1323–1326  mathnet  mathscinet  zmath
124. G. I. Shishkin, “Increasing the accuracy of solutions of difference schemes for parabolic equations with a small parameter multiplying the highest derivative”, Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984),  864–875  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 24:3 (1984), 150–157 22
1983
125. G. I. Shishkin, “Difference scheme on a nonuniform grid for a differential equation with small parameter multiplying the highest derivative”, Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983),  609–619  mathnet  mathscinet; U.S.S.R. Comput. Math. Math. Phys., 23:3 (1983), 59–66 23
1979
126. G. I. Shishkin, “The numerical solution of elliptic equations with a small parameter at the leading derivatives”, Dokl. Akad. Nauk SSSR, 245:4 (1979),  804–808  mathnet  mathscinet  zmath
127. G. I. Shishkin, “Mesh method for solving elliptic equations with discontinuous boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  640–651  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 19:3 (1979), 82–95 1
1978
128. G. I. Shishkin, “A difference scheme for the solution of an elliptic equation with a small parameter in a region with a curvilinear boundary”, Zh. Vychisl. Mat. Mat. Fiz., 18:6 (1978),  1466–1475  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 18:6 (1978), 105–115 2
1977
129. G. I. Shishkin, “The first boundary value problem for a second order equation with small parameters multiplying the derivatives”, Differ. Uravn., 13:2 (1977),  376–378  mathnet  mathscinet  zmath 2
1976
130. G. I. Shishkin, “Über ein Problem Stefanschen Typs mit Verschwinden einer der Phasen”, Differ. Uravn., 12:12 (1976),  2283–2284  mathnet  zmath
1975
131. G. I. Shishkin, “On a problem of Stefan type with discontinuous moving boundary”, Dokl. Akad. Nauk SSSR, 224:6 (1975),  1276–1278  mathnet  mathscinet  zmath
1971
132. G. I. Shishkin, “On a heat transfer problem with free boundary”, Dokl. Akad. Nauk SSSR, 197:6 (1971),  1276–1279  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024