|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
G. I. Shishkin, L. P. Shishkina, “An improved difference scheme for the Cauchy problem in the case of a transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023), 1272–1278 ; Comput. Math. Math. Phys., 63:8 (2023), 1401–1407 |
|
2022 |
2. |
G. I. Shishkin, L. P. Shishkina, “A difference scheme of the decomposition method for an initial boundary value problem for the singularly perturbed transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022), 1224–1232 ; Comput. Math. Math. Phys., 62:7 (2022), 1193–1201 |
2
|
3. |
G. I. Shishkin, L. P. Shishkina, “Erratum to: Monotone decomposition of the Cauchy problem for a hyperbolic equation based on transport equations”, Comput. Math. Math. Phys., 62:4 (2022), 700 |
4. |
G. I. Shishkin, L. P. Shishkina, “Monotone decomposition of the Cauchy problem for a hyperbolic equation based on transport equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022), 442–450 ; Comput. Math. Math. Phys., 62:3 (2022), 432–440 |
|
2017 |
5. |
G. I. Shishkin, “Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1824–1830 ; Comput. Math. Math. Phys., 57:11 (2017), 1789–1795 |
8
|
6. |
G. I. Shishkin, “Computer difference scheme for a singularly perturbed elliptic convection-diffusion equation in the presence of perturbations”, Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017), 814–831 ; Comput. Math. Math. Phys., 57:5 (2017), 815–832 |
1
|
|
2016 |
7. |
G. I. Shishkin, “Computer difference scheme for a singularly perturbed reaction-diffusion equation in the presence of perturbations”, Model. Anal. Inform. Sist., 23:5 (2016), 577–586 |
|
2015 |
8. |
G. I. Shishkin, L. P. Shishkina, “Difference scheme of highest accuracy order for a singularly perturbed reaction-diffusion equation based on the solution decomposition method”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 280–293 ; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 262–275 |
2
|
9. |
G. I. Shishkin, “Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations”, Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015), 1876–1892 ; Comput. Math. Math. Phys., 55:11 (2015), 1842–1856 |
3
|
10. |
G. I. Shishkin, L. P. Shishkina, “A higher order accurate solution decomposition scheme for a singularly perturbed parabolic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 393–416 ; Comput. Math. Math. Phys., 55:3 (2015), 386–409 |
1
|
|
2014 |
11. |
G. I. Shishkin, L. P. Shishkina, “A stable standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of computer perturbations”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 322–333 |
1
|
12. |
G. I. Shishkin, “Computer difference scheme for a singularly perturbed convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014), 1256–1269 ; Comput. Math. Math. Phys., 54:8 (2014), 1221–1233 |
3
|
|
2013 |
13. |
G. I. Shishkin, “Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013), 575–599 ; Comput. Math. Math. Phys., 53:4 (2013), 431–454 |
4
|
|
2012 |
14. |
G. I. Shishkin, “Conditioning of a difference scheme of the solution decomposition method for a singularly perturbed convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012), 291–304 |
6
|
15. |
G. I. Shishkin, “Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1010–1041 ; Comput. Math. Math. Phys., 52:6 (2012), 895–925 |
|
2011 |
16. |
G. I. Shishkin, “A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 51:10 (2011), 1816–1839 ; Comput. Math. Math. Phys., 51:10 (2011), 1705–1728 |
1
|
17. |
G. I. Shishkin, L. P. Shishkina, “Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011), 1091–1120 ; Comput. Math. Math. Phys., 51:6 (2011), 1020–1049 |
4
|
|
2010 |
18. |
G. I. Shishkin, L. P. Shishkina, “Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010), 255–271 ; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S197–S214 |
10
|
19. |
G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2113–2133 ; Comput. Math. Math. Phys., 50:12 (2010), 2003–2022 |
16
|
20. |
G. I. Shishkin, L. P. Shishkina, “A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010), 665–678 ; Comput. Math. Math. Phys., 50:4 (2010), 633–645 |
1
|
21. |
G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010), 458–478 ; Comput. Math. Math. Phys., 50:3 (2010), 437–456 |
11
|
|
2009 |
22. |
G. I. Shishkin, “Approximation of singularly perturbed parabolic equations in unbounded domains subject to piecewise smooth boundary conditions in the case of solutions that grow at infinity”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1827–1843 ; Comput. Math. Math. Phys., 49:10 (2009), 1748–1764 |
23. |
G. I. Shishkin, “The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition”, Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1416–1436 ; Comput. Math. Math. Phys., 49:8 (2009), 1348–1368 |
10
|
24. |
G. I. Shishkin, L. P. Shishkina, “Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry”, Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009), 840–856 ; Comput. Math. Math. Phys., 49:5 (2009), 810–826 |
1
|
|
2008 |
25. |
I. V. Tselischeva, G. I. Shishkin, “Sequential and parallel domain decomposition methods for a singularly perturbed parabolic convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:1 (2008), 202–220 ; Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S206–S227 |
1
|
26. |
G. I. Shishkin, “Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: $\varepsilon$-uniformly convergent schemes”, Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008), 1014–1033 ; Comput. Math. Math. Phys., 48:6 (2008), 956–974 |
7
|
27. |
G. I. Shishkin, “Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008), 813–830 ; Comput. Math. Math. Phys., 48:5 (2008), 769–785 |
9
|
28. |
G. I. Shishkin, L. P. Shishkina, “Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle”, Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008), 660–673 ; Comput. Math. Math. Phys., 48:4 (2008), 627–640 |
6
|
|
2007 |
29. |
G. I. Shishkin, “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 218–233 ; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S213–S230 |
8
|
30. |
G. I. Shishkin, “Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007), 146–172 |
31. |
G. I. Shishkin, “Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 47:10 (2007), 1706–1726 ; Comput. Math. Math. Phys., 47:10 (2007), 1636–1655 |
8
|
32. |
G. I. Shishkin, “Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters”, Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007), 835–866 ; Comput. Math. Math. Phys., 47:5 (2007), 797–828 |
11
|
33. |
S. Li, G. I. Shishkin, L. P. Shishkina, “Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data”, Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007), 460–480 ; Comput. Math. Math. Phys., 47:3 (2007), 442–462 |
12
|
|
2006 |
34. |
G. I. Shishkin, “Richardson's method for increasing the accuracy of difference solutions of singularly perturbed elliptic convection-diffusion equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 2, 57–71 ; Russian Math. (Iz. VUZ), 50:2 (2006), 57–71 |
8
|
35. |
G. I. Shishkin, “Higher-order accurate method for a quasilinear singularly perturbed elliptic convection-diffusion equation”, Sib. Zh. Vychisl. Mat., 9:1 (2006), 81–108 |
5
|
36. |
G. I. Shishkin, “Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006), 2045–2064 ; Comput. Math. Math. Phys., 46:11 (2006), 1953–1971 |
3
|
37. |
G. I. Shishkin, “The use of solutions on embedded grids for the approximation of singularly perturbed parabolic
convection-diffusion equations on adapted grids”, Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006), 1617–1637 ; Comput. Math. Math. Phys., 46:9 (2006), 1539–1559 |
10
|
38. |
G. I. Shishkin, “Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side”, Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006), 407–420 ; Comput. Math. Math. Phys., 46:3 (2006), 388–401 |
5
|
39. |
G. I. Shishkin, “A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 46:2 (2006), 242–261 ; Comput. Math. Math. Phys., 46:2 (2006), 231–250 |
40. |
G. I. Shishkin, “Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 52–76 ; Comput. Math. Math. Phys., 46:1 (2006), 49–72 |
15
|
|
2005 |
41. |
G. I. Shishkin, L. P. Shishkina, “A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation”, Differ. Uravn., 41:7 (2005), 980–989 ; Differ. Equ., 41:7 (2005), 1030–1039 |
23
|
42. |
G. I. Shishkin, “A domain decomposition method in the case of nonoverlapping subdomains for a singularly perturbed convection-diffusion equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2, 62–73 ; Russian Math. (Iz. VUZ), 49:2 (2005), 58–70 |
1
|
43. |
G. I. Shishkin, “On an adaptive grid method for singularly perturbed elliptic reaction-diffusion equations in a domain with a curvilinear boundary”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 1, 73–88 ; Russian Math. (Iz. VUZ), 49:1 (2005), 69–83 |
3
|
44. |
G. I. Shishkin, “Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries”, Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005), 1196–1212 ; Comput. Math. Math. Phys., 45:7 (2005), 1155–1171 |
3
|
45. |
G. I. Shishkin, “Grid approximation in a half plane for singularly perturbed elliptic equations with convective terms that grow at infinity”, Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005), 298–314 ; Comput. Math. Math. Phys., 45:2 (2005), 285–301 |
3
|
46. |
G. I. Shishkin, “Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005), 110–125 ; Comput. Math. Math. Phys., 45:1 (2005), 104–119 |
13
|
|
2004 |
47. |
P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “High-order accurate decomposition of the Richardson method for a singularly perturbed elliptic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004), 329–337 ; Comput. Math. Math. Phys., 44:2 (2004), 309–316 |
15
|
|
2003 |
48. |
G. I. Shishkin, “Numerical methods on adaptive grids for singularly perturbed elliptic equations in a domain with a curvilinear boundary”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 1, 74–85 ; Russian Math. (Iz. VUZ), 47:1 (2003), 72–83 |
1
|
49. |
P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions”, Matem. Mod., 15:8 (2003), 99–112 |
50. |
G. I. Shishkin, “Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source”, Matem. Mod., 15:2 (2003), 43–61 |
2
|
51. |
G. I. Shishkin, “An improved piecewise uniform mesh for a singularly perturbed elliptic reaction-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003), 172–179 ; Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 2, S138–S147 |
2
|
52. |
G. I. Shishkin, “Grid approximation of improved convergence order for a singularly perturbed elliptic convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003), 165–182 ; Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S184–S202 |
4
|
53. |
G. I. Shishkin, “The grid approximation of a singularly perturbed parabolic equation on a composed domain with a moving boundary containing a concentrated source”, Zh. Vychisl. Mat. Mat. Fiz., 43:12 (2003), 1806–1824 ; Comput. Math. Math. Phys., 43:12 (2003), 1738–1755 |
8
|
54. |
G. I. Shishkin, “Approximation of solutions and derivative of singularly perturbed elliptic equation of convection-diffusion”, Zh. Vychisl. Mat. Mat. Fiz., 43:5 (2003), 672–689 ; Comput. Math. Math. Phys., 43:5 (2003), 641–657 |
2
|
55. |
G. I. Shishkin, “The Schwarz grid method for singularly perturbed convection-diffusion parabolic equations in the case of coherent and incoherent grids on subdomains”, Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003), 251–264 ; Comput. Math. Math. Phys., 43:2 (2003), 242–254 |
|
2002 |
56. |
G. I. Shishkin, “Piecewise-uniform grids, optimal with respect to the order of convergence, for singularly perturbed convection-diffusion equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 3, 60–72 ; Russian Math. (Iz. VUZ), 46:3 (2002), 56–68 |
57. |
G. I. Shishkin, “Grid approximations with an improved rate of convergence for singularly perturbed elliptic equations in domains with characteristic boundaries”, Sib. Zh. Vychisl. Mat., 5:1 (2002), 71–92 |
11
|
58. |
G. I. Shishkin, “Grid approximation of a singularly perturbed parabolic reaction-diffusion equation with a fast-moving source”, Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002), 823–836 ; Comput. Math. Math. Phys., 42:6 (2002), 788–801 |
2
|
|
2001 |
59. |
G. I. Shishkin, “Grid Approximations to Singularly Perturbed Parabolic Equations with Turning Points”, Differ. Uravn., 37:7 (2001), 987–999 ; Differ. Equ., 37:7 (2001), 1037–1050 |
4
|
60. |
G. I. Shishkin, “A Grid Approximation to the Transport Equation in the Problem on a Flow Past a Flat Plate at Large Reynolds Numbers”, Differ. Uravn., 37:3 (2001), 415–424 ; Differ. Equ., 37:3 (2001), 444–453 |
1
|
61. |
G. I. Shishkin, “Grid approximation of a wave equation singularly perturbed with respect to the space variable”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 1, 67–81 ; Russian Math. (Iz. VUZ), 45:1 (2001), 63–77 |
62. |
G. I. Shishkin, “The method of total approximation for singularly perturbed elliptic equations with convective terms”, Matem. Mod., 13:4 (2001), 95–108 |
63. |
G. I. Shishkin, “Approximation of singularly perturbed reaction-diffusion equations on adaptive meshes”, Matem. Mod., 13:3 (2001), 103–118 |
12
|
64. |
A. A. Samarskii, V. I. Mazhukin, P. P. Matus, G. I. Shishkin, “Monotone difference schemes for equations with mixed derivative”, Matem. Mod., 13:2 (2001), 17–26 |
4
|
65. |
G. I. Shishkin, “A decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions”, Sib. Zh. Vychisl. Mat., 4:1 (2001), 85–106 |
66. |
G. I. Shishkin, “Mesh approximation of singularly perturbed equations with convective terms for the perturbation of data”, Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001), 692–707 ; Comput. Math. Math. Phys., 41:5 (2001), 649–664 |
8
|
67. |
G. I. Shishkin, “Grid approximation of the solution to the Blasius equation and of its derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001), 39–56 ; Comput. Math. Math. Phys., 41:1 (2001), 37–54 |
2
|
|
2000 |
68. |
P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “Distributing the numerical solution of parabolic singularly perturbed problems with defect correction over independent processes”, Sib. Zh. Vychisl. Mat., 3:3 (2000), 229–258 |
2
|
69. |
G. I. Shishkin, “Approximation of systems of convection-diffusion elliptic equations with parabolic boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000), 1648–1661 ; Comput. Math. Math. Phys., 40:11 (2000), 1582–1595 |
2
|
70. |
G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems on locally condensing grids: Convection-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz., 40:5 (2000), 714–725 ; Comput. Math. Math. Phys., 40:5 (2000), 680–691 |
6
|
|
1999 |
71. |
G. I. Shishkin, “Optimization of piecewise-uniform grids for singularly perturbed equations of reaction-diffusion type”, Differ. Uravn., 35:7 (1999), 990–997 ; Differ. Equ., 35:7 (1999), 1000–1007 |
72. |
G. I. Shishkin, “Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms”, Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5, 81–93 ; Russian Math. (Iz. VUZ), 43:5 (1999), 77–89 |
2
|
73. |
G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems on locally refined meshes. Reaction-diffusion equations”, Matem. Mod., 11:12 (1999), 87–104 |
5
|
74. |
G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems in a nonconvex domain with a piecewise smooth boundary”, Matem. Mod., 11:11 (1999), 75–90 |
4
|
75. |
G. I. Shishkin, “Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms”, Zh. Vychisl. Mat. Mat. Fiz., 39:2 (1999), 262–279 ; Comput. Math. Math. Phys., 39:2 (1999), 249–265 |
|
1998 |
76. |
G. I. Shishkin, “Grid approximation of singularly perturbed systems of elliptic and parabolic equations with convective terms”, Differ. Uravn., 34:12 (1998), 1686–1696 ; Differ. Equ., 34:12 (1998), 1693–1704 |
2
|
77. |
G. I. Shishkin, “Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow”, Sib. Zh. Vychisl. Mat., 1:3 (1998), 281–297 |
2
|
78. |
G. I. Shishkin, “Finite-difference approximations for singularly perturbed elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 38:12 (1998), 1989–2001 ; Comput. Math. Math. Phys., 38:12 (1998), 1909–1921 |
8
|
79. |
G. I. Shishkin, “Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall”, Zh. Vychisl. Mat. Mat. Fiz., 38:11 (1998), 1844–1859 ; Comput. Math. Math. Phys., 38:11 (1998), 1768–1782 |
80. |
G. I. Shishkin, “A grid approximation for the Riemann problem in the case of the Burgers equation”, Zh. Vychisl. Mat. Mat. Fiz., 38:8 (1998), 1418–1420 ; Comput. Math. Math. Phys., 38:8 (1998), 1361–1363 |
1
|
|
1997 |
81. |
G. I. Shishkin, I. V. Tselischeva, “The decomposition method for singularly perturbed boundary value problems with the local perturbation of the initial conditions. Equations with convective terms”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 4, 98–107 ; Russian Math. (Iz. VUZ), 41:4 (1997), 96–105 |
2
|
82. |
G. I. Shishkin, “Singularly perturbed boundary value problems with concentrated sources and discontinuous initial conditions”, Zh. Vychisl. Mat. Mat. Fiz., 37:4 (1997), 429–446 ; Comput. Math. Math. Phys., 37:4 (1997), 417–434 |
12
|
83. |
G. I. Shishkin, “Grid approximation of a singularly perturbed Neumann problem for parabolic equations in the case of a discontinuous boundary function”, Zh. Vychisl. Mat. Mat. Fiz., 37:3 (1997), 378–381 ; Comput. Math. Math. Phys., 37:3 (1997), 370–373 |
|
1996 |
84. |
G. I. Shishkin, “Grid approximation of singularly perturbed equations with convective terms in the case of mixed boundary conditions”, Differ. Uravn., 32:5 (1996), 689–701 ; Differ. Equ., 32:5 (1996), 698–711 |
85. |
G. I. Shishkin, “Grid approximation of singularly perturbed quasi-linear elliptic equations in a case of multiple solutions of the reduced equation”, Matem. Mod., 8:7 (1996), 109–127 |
86. |
G. I. Shishkin, I. V. Tselischeva, “Parallel methods of solving singularly perturbed boundary value problems for elliptic equations”, Matem. Mod., 8:3 (1996), 111–127 |
87. |
G. I. Shishkin, “Approximation of the solutions and diffusion flows of singularly perturbed boundary-value problems with discontinuous initial conditions”, Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996), 83–104 ; Comput. Math. Math. Phys., 36:9 (1996), 1233–1250 |
9
|
88. |
G. I. Shishkin, “Grid approximation of parabolic equations with singular initial conditions”, Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996), 73–92 ; Comput. Math. Math. Phys., 36:3 (1996), 341–356 |
1
|
89. |
G. I. Shishkin, “Locally one-dimensional difference schemes for singularly perturbed parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 36:2 (1996), 42–61 ; Comput. Math. Math. Phys., 36:2 (1996), 165–180 |
|
1995 |
90. |
G. I. Shishkin, “A difference scheme for the problem of the decay of a
discontinuity in the case of the viscous Burgers equation”, Dokl. Akad. Nauk, 342:3 (1995), 313–317 |
91. |
P. N. Vabishchevich, G. I. Shishkin, “Difference schemes on locally condensing grids”, Differ. Uravn., 31:7 (1995), 1179–1183 ; Differ. Equ., 31:7 (1995), 1121–1126 |
1
|
92. |
G. I. Shishkin, “Grid approximation of quasi-linear singularly perturbed elliptic and parabolic equations with mixed boundary conditions”, Matem. Mod., 7:10 (1995), 111–126 |
93. |
G. I. Shishkin, “A problem for grid approximation of the diffusion flow in numerical modelling of pollution transport”, Matem. Mod., 7:7 (1995), 61–80 |
1
|
94. |
I. V. Pershin, V. A. Titov, G. I. Shishkin, “Experimental evaluation of the order of uniform convergence for special difference schemes”, Matem. Mod., 7:6 (1995), 85–94 |
95. |
G. I. Shishkin, “Grid approximation of boundary value problems for singularly perturbed quasi-linear elliptic equations with interior layer”, Matem. Mod., 7:2 (1995), 72–88 |
96. |
G. I. Shishkin, “Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 35:4 (1995), 542–564 ; Comput. Math. Math. Phys., 35:4 (1995), 429–446 |
9
|
|
1994 |
97. |
G. I. Shishkin, “Grid approximation of boundary value problems for singularly perturbed quasilinear elliptic equations in the case of limit equations that are degenerate on the boundary”, Differ. Uravn., 30:7 (1994), 1244–1258 ; Differ. Equ., 30:7 (1994), 1152–1166 |
98. |
G. I. Shishkin, “Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer”, Matem. Mod., 6:5 (1994), 105–121 |
99. |
G. I. Shishkin, “The method of additive separation of singularities for quasilinear singularly perturbed elliptic and parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 34:12 (1994), 1793–1814 ; Comput. Math. Math. Phys., 34:12 (1994), 1541–1558 |
100. |
G. I. Shishkin, “A grid approximation of singularly perturbed quasilinear elliptic and parabolic equations which degenerate into equations without spatial derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994), 1632–1651 ; Comput. Math. Math. Phys., 34:11 (1994), 1403–1419 |
101. |
G. I. Shishkin, “A grid approximation of the method of additive separation of singularities for a singularly perturbed equation of parabolic type”, Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994), 720–738 ; Comput. Math. Math. Phys., 34:5 (1994), 621–637 |
|
1993 |
102. |
G. I. Shishkin, “Grid approximation of the Dirichlet problem for a singularly
perturbed quasilinear parabolic equation with a transition layer”, Dokl. Akad. Nauk, 332:4 (1993), 424–427 ; Dokl. Math., 48:2 (1994), 346–352 |
103. |
G. I. Shishkin, “Grid approximation of a singularly perturbed quasilinear equation
with a transition layer”, Dokl. Akad. Nauk, 328:3 (1993), 299–302 ; Dokl. Math., 47:1 (1993), 83–88 |
104. |
G. I. Shishkin, “Mesh approximation of singularly perturbed quasilinear elliptic equations which degenerate to a zero-order equation”, Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993), 1305–1323 ; Comput. Math. Math. Phys., 33:9 (1993), 1155–1170 |
105. |
G. I. Shishkin, “Lattice approximation of singularly perturbed degenerate elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993), 541–560 ; Comput. Math. Math. Phys., 33:4 (1993), 493–509 |
|
1992 |
106. |
V. E. Tret'yakov, I. V. Tselischeva, G. I. Shishkin, “The optimal control of systems with incomplete and incorrect information”, Trudy Inst. Mat. i Mekh. UrO RAN, 2 (1992), 176–187 |
107. |
G. I. Shishkin, “A difference scheme for a singularly perturbed parabolic equation degenerating on the boundary”, Zh. Vychisl. Mat. Mat. Fiz., 32:5 (1992), 717–732 ; Comput. Math. Math. Phys., 32:5 (1992), 621–636 |
108. |
G. I. Shishkin, “A difference approximation of a singularly perturbed boundary-value problem for quasilinear elliptic equations degenerating into first-order equations”, Zh. Vychisl. Mat. Mat. Fiz., 32:4 (1992), 550–566 ; Comput. Math. Math. Phys., 32:4 (1992), 467–480 |
15
|
|
1991 |
109. |
G. I. Shishkin, “Difference approximation of a singularly perturbed quasilinear
elliptic equation that degenerates into a first-order equation”, Dokl. Akad. Nauk SSSR, 317:4 (1991), 845–849 ; Dokl. Math., 43:2 (1991), 562–566 |
2
|
110. |
V. A. Titov, G. I. Shishkin, V. V. Yakovlev, A. P. Khripunov, I. V. Pershin, “The mathematical modelling of hydrogen diffusion process in welding joints with inclusions”, Matem. Mod., 3:3 (1991), 27–35 |
111. |
G. I. Shishkin, “Grid approximation of a singularly perturbed boundary-value problem for a quasi-linear elliptic equation in the completely degenerate case”, Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991), 1808–1825 ; U.S.S.R. Comput. Math. Math. Phys., 31:12 (1991), 33–46 |
19
|
112. |
G. I. Shishkin, “A grid approximation of singularly perturbed parabolic equations degenerate on the boundary”, Zh. Vychisl. Mat. Mat. Fiz., 31:10 (1991), 1498–1511 ; U.S.S.R. Comput. Math. Math. Phys., 31:10 (1991), 53–63 |
2
|
|
1989 |
113. |
G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with discontinuous coefficients and concentrated factors”, Zh. Vychisl. Mat. Mat. Fiz., 29:9 (1989), 1277–1290 ; U.S.S.R. Comput. Math. Math. Phys., 29:5 (1989), 9–19 |
13
|
114. |
G. I. Shishkin, “Approximation of solutions of singularly perturbed boundary value problems with a parabolic boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 29:7 (1989), 963–977 ; U.S.S.R. Comput. Math. Math. Phys., 29:4 (1989), 1–10 |
87
|
|
1988 |
115. |
G. I. Shishkin, “A difference scheme for a singularly perturbed equation of
parabolic type with a discontinuous initial condition”, Dokl. Akad. Nauk SSSR, 300:5 (1988), 1066–1070 ; Dokl. Math., 37:3 (1988), 792–796 |
10
|
116. |
G. I. Shishkin, “A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 28:11 (1988), 1649–1662 ; U.S.S.R. Comput. Math. Math. Phys., 28:6 (1988), 32–41 |
45
|
|
1987 |
117. |
G. I. Shishkin, “Approximation of the solutions of singularly perturbed boundary
value problems with a corner boundary layer”, Dokl. Akad. Nauk SSSR, 296:1 (1987), 39–43 ; Dokl. Math., 36:2 (1988), 240–244 |
2
|
118. |
G. I. Shishkin, “Approximation of solutions of singularly perturbed boundary-value problems with a corner boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987), 1360–1374 ; U.S.S.R. Comput. Math. Math. Phys., 27:5 (1987), 54–63 |
12
|
|
1986 |
119. |
G. I. Shishkin, “A difference scheme for an elliptic equation with a small
parameter multiplying the highest derivatives”, Dokl. Akad. Nauk SSSR, 286:1 (1986), 57–61 |
1
|
120. |
G. I. Shishkin, “Solution of a boundary value problem for an elliptic equation with small parameter multiplying the highest derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 26:7 (1986), 1019–1031 ; U.S.S.R. Comput. Math. Math. Phys., 26:4 (1986), 38–46 |
8
|
|
1985 |
121. |
G. I. Shishkin, “A difference scheme for a fourth-order elliptic equation with a small parameter multiplying the derivatives”, Differ. Uravn., 21:12 (1985), 2159–2165 |
122. |
G. I. Shishkin, “A difference scheme for a fourth-order ordinary differential equation with a small parameter multiplying the highest derivative”, Differ. Uravn., 21:10 (1985), 1734–1742 |
|
1984 |
123. |
G. I. Shishkin, “A difference scheme for a fourth-order differential equation with
a small parameter multiplying the highest derivative”, Dokl. Akad. Nauk SSSR, 275:6 (1984), 1323–1326 |
124. |
G. I. Shishkin, “Increasing the accuracy of solutions of difference schemes for parabolic equations with a small parameter multiplying the highest derivative”, Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984), 864–875 ; U.S.S.R. Comput. Math. Math. Phys., 24:3 (1984), 150–157 |
22
|
|
1983 |
125. |
G. I. Shishkin, “Difference scheme on a nonuniform grid for a differential equation with small parameter multiplying the highest derivative”, Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983), 609–619 ; U.S.S.R. Comput. Math. Math. Phys., 23:3 (1983), 59–66 |
23
|
|
1979 |
126. |
G. I. Shishkin, “The numerical solution of elliptic equations with a small parameter at the leading derivatives”, Dokl. Akad. Nauk SSSR, 245:4 (1979), 804–808 |
127. |
G. I. Shishkin, “Mesh method for solving elliptic equations with discontinuous boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979), 640–651 ; U.S.S.R. Comput. Math. Math. Phys., 19:3 (1979), 82–95 |
1
|
|
1978 |
128. |
G. I. Shishkin, “A difference scheme for the solution of an elliptic equation with a small parameter in a region with a curvilinear boundary”, Zh. Vychisl. Mat. Mat. Fiz., 18:6 (1978), 1466–1475 ; U.S.S.R. Comput. Math. Math. Phys., 18:6 (1978), 105–115 |
2
|
|
1977 |
129. |
G. I. Shishkin, “The first boundary value problem for a second order equation with small parameters multiplying the derivatives”, Differ. Uravn., 13:2 (1977), 376–378 |
2
|
|
1976 |
130. |
G. I. Shishkin, “Über ein Problem Stefanschen Typs mit Verschwinden einer der Phasen”, Differ. Uravn., 12:12 (1976), 2283–2284 |
|
1975 |
131. |
G. I. Shishkin, “On a problem of Stefan type with discontinuous moving boundary”, Dokl. Akad. Nauk SSSR, 224:6 (1975), 1276–1278 |
|
1971 |
132. |
G. I. Shishkin, “On a heat transfer problem with free boundary”, Dokl. Akad. Nauk SSSR, 197:6 (1971), 1276–1279 |
|
Organisations |
|
|
|
|