Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 11, Pages 1876–1892
DOI: https://doi.org/10.7868/S0044466915110174
(Mi zvmmf10298)
 

This article is cited in 3 scientific papers (total in 3 papers)

Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations

G. I. Shishkin

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990, Russia
Full-text PDF (171 kB) Citations (3)
References:
Abstract: An initial–boundary value problem is considered for a singularly perturbed parabolic convection–diffusion equation with a perturbation parameter $\varepsilon$ $(\varepsilon\in(0, 1])$ multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge $\varepsilon$-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if $N^{-1}\ll\varepsilon$ and $N_0^{-1}\ll1$, where $N$ and $N_0$ are the numbers of grid intervals in $x$ and $t$, respectively, the scheme is not $\varepsilon$-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the “parameters” of the difference scheme and of the computer (namely, on $\varepsilon$, $N$, $N_0$, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.
Key words: singularly perturbed initial–boundary value problem, parabolic convection–diffusion equation, boundary layer, standard difference scheme on uniform meshes, perturbations of data of the grid problem, computer perturbations in computations, maximum norm, stability of schemes to perturbations, conditioning of schemes, computer difference scheme.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00618_à
Received: 07.04.2015
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 11, Pages 1842–1856
DOI: https://doi.org/10.1134/S0965542515110159
Bibliographic databases:
Document Type: Article
UDC: 519.633
MSC: Primary 65M06; Secondary 65M12, 65M50
Language: Russian
Citation: G. I. Shishkin, “Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations”, Zh. Vychisl. Mat. Mat. Fiz., 55:11 (2015), 1876–1892; Comput. Math. Math. Phys., 55:11 (2015), 1842–1856
Citation in format AMSBIB
\Bibitem{Shi15}
\by G.~I.~Shishkin
\paper Difference scheme for a singularly perturbed parabolic convection–diffusion equation in the presence of perturbations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 11
\pages 1876--1892
\mathnet{http://mi.mathnet.ru/zvmmf10298}
\crossref{https://doi.org/10.7868/S0044466915110174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3423049}
\elib{https://elibrary.ru/item.asp?id=24730745}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 11
\pages 1842--1856
\crossref{https://doi.org/10.1134/S0965542515110159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365036400007}
\elib{https://elibrary.ru/item.asp?id=24971308}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84947263624}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10298
  • https://www.mathnet.ru/eng/zvmmf/v55/i11/p1876
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :91
    References:86
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024