Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 1, Pages 52–76 (Mi zvmmf533)  

This article is cited in 15 scientific papers (total in 15 papers)

Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: A boundary value problem for a singularly perturbed parabolic convection-diffusion equation on an interval is considered. The higher order derivative in the equation is multiplied by a parameter $\varepsilon$ that can take arbitrary values in the half-open interval (0, 1]. The first derivative of the initial function has a discontinuity of the first kind at the point $x_0$. For small values of $\varepsilon$ a boundary layer with the typical width of $\varepsilon$ appears in a neighborhood of the part of the boundary through which the convective flow leaves the domain; in a neighborhood of the characteristic of the reduced equation outgoing from the point $(x_0,0)$, a transient (moving in time) layer with the typical width of $\varepsilon^{1/2}$ appears. Using the method of special grids that condense in a neighborhood of the boundary layer and the method of additive separation of the singularity of the transient layer, special difference schemes are designed that make it possible to approximate the solution of the boundary value problem $\varepsilon$-uniformly on the entire set $\bar G$, approximate the diffusion flow (i.e., the product $\varepsilon(\partial/\partial x)u(x,t))$ on the set $\bar G^*=\bar G\setminus\{(x_0,0)\}$, and approximate the derivative $(\partial/\partial x)u(x,t)$ on the same set outside the $m$-neighborhood of the boundary layer. The approximation of the derivatives $\varepsilon^2(\partial^2/\partial x^2)u(x,t))$ and $(\partial/\partial t)u(x, t)$ on the set $\bar G^*$ is also examined.
Key words: singularly perturbed boundary value problem, parabolic convection-diffusion equation, piecewise smooth initial condition, finite difference approximation, convergence, special grids, additive separation of singularities.
Received: 23.08.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 1, Pages 49–72
DOI: https://doi.org/10.1134/S0965542506010076
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 52–76; Comput. Math. Math. Phys., 46:1 (2006), 49–72
Citation in format AMSBIB
\Bibitem{Shi06}
\by G.~I.~Shishkin
\paper Grid approximation of singularly perturbed parabolic convection-diffusion equations with a~piecewise-smooth initial condition
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 1
\pages 52--76
\mathnet{http://mi.mathnet.ru/zvmmf533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2239726}
\zmath{https://zbmath.org/?q=an:05200886}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 1
\pages 49--72
\crossref{https://doi.org/10.1134/S0965542506010076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746089098}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf533
  • https://www.mathnet.ru/eng/zvmmf/v46/i1/p52
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024