Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 5, Pages 835–866 (Mi zvmmf292)  

This article is cited in 11 scientific papers (total in 11 papers)

Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: In a rectangle, the Dirichlet problem for a system of two singularly perturbed elliptic reaction-diffusion equations is considered. The higher order derivatives of the $i$th equation are multiplied by the perturbation parameter $\varepsilon_i^2$ ($i=1,2$). The parameters $\varepsilon_i$ take arbitrary values in the half-open interval $(0,1]$. When the vector parameter $\boldsymbol\varepsilon=(\varepsilon_1, \varepsilon_2)$ vanishes, the system of elliptic equations degenerates into a system of algebraic equations. When the components $\varepsilon_1$ and (or) $\varepsilon_2$ tend to zero, a double boundary layer with the characteristic width $\varepsilon_1$ and $\varepsilon_2$ appears in the vicinity of the boundary. Using the grid refinement technique and the classical finite difference approximations of the boundary value problem, special difference schemes that converge $\boldsymbol\varepsilon$-uniformly at the rate of $O(N^{-2}\ln^2N)$ are constructed, where $N=\min_sN_s$, $N_s+1$ is the number of mesh points on the axis $x_s$.
Key words: singularly perturbed elliptic equation, system of reaction-diffusion equations with two parameters, finite difference method, double boundary layer, rate of convergence at a difference scheme, $\varepsilon$-uniform convergence.
Received: 06.12.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 5, Pages 797–828
DOI: https://doi.org/10.1134/S0965542507050077
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters”, Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007), 835–866; Comput. Math. Math. Phys., 47:5 (2007), 797–828
Citation in format AMSBIB
\Bibitem{Shi07}
\by G.~I.~Shishkin
\paper Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 5
\pages 835--866
\mathnet{http://mi.mathnet.ru/zvmmf292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2378662}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 5
\pages 797--828
\crossref{https://doi.org/10.1134/S0965542507050077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249732999}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf292
  • https://www.mathnet.ru/eng/zvmmf/v47/i5/p835
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:1531
    Full-text PDF :297
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024