Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2005, Volume 45, Number 1, Pages 110–125 (Mi zvmmf721)  

This article is cited in 13 scientific papers (total in 13 papers)

Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: The Dirichlet problem for a singularly perturbed elliptic convection-diffusion equation in a rectangle and in a vertical half-strip with a vector perturbation parameter $\varepsilon=(\varepsilon_1,\varepsilon_2)$ is considered. The higher derivatives of the equation and the first derivative with respect to the vertical coordinate include the parameters $\varepsilon_1$ and $\varepsilon_2$, respectively, which can take arbitrary values in the intervals $(0,1]$ and $[--1,1]$. For small values of $\varepsilon_1$, boundary layers appear in the neighborhood of various parts of the domain boundary. The type of these layers depends on the relation between $\varepsilon_1$ and $\varepsilon_2$: they can be regular, parabolic, or hyperbolic. Their characteristics also depend on the relation between $\varepsilon_1$ and $\varepsilon_2$. Using the special grid technique (these grids are condensing in the boundary layers), finite difference schemes are constructed that $\varepsilon$-uniformly converge in the maximum norm.
Key words: singularly perturbed problem for the elliptic equation, grid approximation, convergence, special grids.
Received: 05.04.2004
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: G. I. Shishkin, “Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005), 110–125; Comput. Math. Math. Phys., 45:1 (2005), 104–119
Citation in format AMSBIB
\Bibitem{Shi05}
\by G.~I.~Shishkin
\paper Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 1
\pages 110--125
\mathnet{http://mi.mathnet.ru/zvmmf721}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2151047}
\zmath{https://zbmath.org/?q=an:1114.65130}
\elib{https://elibrary.ru/item.asp?id=9134020}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 1
\pages 104--119
\elib{https://elibrary.ru/item.asp?id=13494603}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf721
  • https://www.mathnet.ru/eng/zvmmf/v45/i1/p110
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :151
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024