Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 12, Pages 2113–2133 (Mi zvmmf4977)  

This article is cited in 16 scientific papers (total in 16 papers)

A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation

G. I. Shishkin, L. P. Shishkina

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219 Russia
References:
Abstract: For the one-dimensional singularly perturbed parabolic reaction-diffusion equation with a perturbation parameter $\varepsilon$, where $\varepsilon\in(0,1]$, the grid approximation of the Dirichlet problem on a rectangular domain in the $(x,t)$-plane is examined. For small $\varepsilon$, a parabolic boundary layer emerges in a neighborhood of the lateral part of the boundary of this domain. A new approach to the construction of $\varepsilon$-uniformly converging difference schemes of higher accuracy is developed for initial boundary value problems. The asymptotic construction technique is used to design the base decomposition scheme within which the regular and singular components of the grid solution are solutions to grid subproblems defined on uniform grids. The base scheme converges $\varepsilon$-uniformly in the maximum norm at the rate of $O(N^{-2}\ln^2N+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of nodes in the space and time meshes, respectively. An application of the Richardson extrapolation technique to the base scheme yields a higher order scheme called the Richardson decomposition scheme. This higher order scheme converges $\varepsilon$-uniformly at the rate of $O(N^{-4}\ln^4N+N_0^{-2})$. For fixed values of the parameter, the convergence rate is $O(N^{-4}+N_0^{-2})$.
Key words: parabolic reaction-diffusion equation, boundary layer, decomposition of grid solution, uniform grids, asymptotic construction technique, Richardson extrapolation technique, higher order finite difference scheme, $\varepsilon$-uniform convergence.
Received: 25.05.2010
Revised: 15.06.2010
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 12, Pages 2003–2022
DOI: https://doi.org/10.1134/S0965542510120043
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2113–2133; Comput. Math. Math. Phys., 50:12 (2010), 2003–2022
Citation in format AMSBIB
\Bibitem{ShiShi10}
\by G.~I.~Shishkin, L.~P.~Shishkina
\paper A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction-diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 12
\pages 2113--2133
\mathnet{http://mi.mathnet.ru/zvmmf4977}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.2003S}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 12
\pages 2003--2022
\crossref{https://doi.org/10.1134/S0965542510120043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650625886}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4977
  • https://www.mathnet.ru/eng/zvmmf/v50/i12/p2113
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:644
    Full-text PDF :288
    References:80
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024