Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 4, Pages 575–599
DOI: https://doi.org/10.7868/S0044466913040133
(Mi zvmmf9870)
 

This article is cited in 4 scientific papers (total in 4 papers)

Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (351 kB) Citations (4)
References:
Abstract: For a singularly perturbed parabolic convection-diffusion equation, the conditioning and stability of finite difference schemes on uniform meshes are analyzed. It is shown that a convergent standard monotone finite difference scheme on a uniform mesh is not $\varepsilon$-uniformly well conditioned or $\varepsilon$-uniformly stable to perturbations of the data of the grid problem (here, $\varepsilon$ is a perturbation parameter, $\varepsilon\in(0,1]$). An alternative finite difference scheme is proposed, namely, a scheme in which the discrete solution is decomposed into regular and singular components that solve grid subproblems considered on uniform meshes. It is shown that this solution decomposition scheme converges $\varepsilon$-uniformly in the maximum norm at an $O(N^{-1}\ln N+N_0^{-1})$ rate, where $N+1$ and $N_0+1$ are the numbers of grid nodes in $x$ and $t$, respectively. This scheme is $\varepsilon$-uniformly well conditioned and $\varepsilon$-uniformly stable to perturbations of the data of the grid problem. The condition number of the solution decomposition scheme is of order $O(\delta^{-2}\ln\delta^{-1}+\delta_0^{-1})$; i.e., up to a logarithmic factor, it is the same as that of a classical scheme on uniform meshes in the case of a regular problem. Here, $\delta=N^{-1}\ln N$ and $\delta_0=N_0^{-1}$ are the accuracies of the discrete solution in $x$ and $t$, respectively.
Key words: singularly perturbed initial-boundary value problem, parabolic convection-diffusion equation, boundary layer, finite difference schemes on uniform meshes, solution decomposition scheme, $\varepsilon$-uniform convergence, maximum norm, $\varepsilon$-uniform stability of a scheme to perturbations, $\varepsilon$-uniformly well conditioned scheme.
Received: 27.10.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 4, Pages 431–454
DOI: https://doi.org/10.1134/S096554251304009X
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013), 575–599; Comput. Math. Math. Phys., 53:4 (2013), 431–454
Citation in format AMSBIB
\Bibitem{Shi13}
\by G.~I.~Shishkin
\paper Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 4
\pages 575--599
\mathnet{http://mi.mathnet.ru/zvmmf9870}
\crossref{https://doi.org/10.7868/S0044466913040133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3254861}
\elib{https://elibrary.ru/item.asp?id=18951087}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 4
\pages 431--454
\crossref{https://doi.org/10.1134/S096554251304009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318871900005}
\elib{https://elibrary.ru/item.asp?id=20427556}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877357414}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9870
  • https://www.mathnet.ru/eng/zvmmf/v53/i4/p575
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :116
    References:71
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024