Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2002, Volume 5, Number 1, Pages 71–92 (Mi sjvm240)  

This article is cited in 11 scientific papers (total in 11 papers)

Grid approximations with an improved rate of convergence for singularly perturbed elliptic equations in domains with characteristic boundaries

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: On a rectangle, we consider the Dirichlet problem for singularly perturbed elliptic equations with convective terms in the case of characteristics of the reduced equations which are parallel to the sides. For such convection-diffusion problems the uniform (with respect to the perturbation parameter $\varepsilon$) convergence rate of the well-known special schemes on piecewise uniform meshes is of order not higher than one (in the uniform $L_{\infty}$-norm). For the above problem, based on asymptotic expansions of the solutions, we construct schemes that converge $\varepsilon$-uniformly with the rate $\mathscr O(N^{-2}\ln^2N)$, where $N$ defines the number of mesh points with respect to each variable. For not too small values of the parameter we apply classical finite difference approximations on piecewise uniform meshes condensing in boundary layers; for small values of the parameter we use approximations of auxiliary problems, which describe the main terms of asymptotic representation of the solution in a neighborhood of the boundary layer and outside of it. Note that the computation of solutions of the constructed difference scheme is simplified for sufficiently small values of the parameter $\varepsilon$.
Received: 09.11.2000
Revised: 28.03.2001
Bibliographic databases:
UDC: 519.632.4
Language: Russian
Citation: G. I. Shishkin, “Grid approximations with an improved rate of convergence for singularly perturbed elliptic equations in domains with characteristic boundaries”, Sib. Zh. Vychisl. Mat., 5:1 (2002), 71–92
Citation in format AMSBIB
\Bibitem{Shi02}
\by G.~I.~Shishkin
\paper Grid approximations with an improved rate of convergence for singularly perturbed elliptic equations in domains with characteristic boundaries
\jour Sib. Zh. Vychisl. Mat.
\yr 2002
\vol 5
\issue 1
\pages 71--92
\mathnet{http://mi.mathnet.ru/sjvm240}
\zmath{https://zbmath.org/?q=an:1027.65138}
Linking options:
  • https://www.mathnet.ru/eng/sjvm240
  • https://www.mathnet.ru/eng/sjvm/v5/i1/p71
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :130
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024