Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 3, Pages 460–480 (Mi zvmmf318)  

This article is cited in 12 scientific papers (total in 12 papers)

Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data

S. Lia, G. I. Shishkinb, L. P. Shishkinab

a Department of Computational Science, National University of Singapore, Singapore, 117543
b Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, Yekaterinburg, 620219, Russia
References:
Abstract: A problem for the Black–Scholes equation that arises in financial mathematics is reduced, by a transformation of variables, to the Cauchy problem for a singularly perturbed parabolic equation with the variables $x$, $t$ and a perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. This problem has several singularities such as the unbounded domain, the piecewise smooth initial function (its first-order derivative in $x$ has a discontinuity of the first kind at the point $x=0$), an interior (moving in time) layer generated by the piecewise smooth initial function for small values of the parameter $\varepsilon$, etc. In this paper, a grid approximation of the solution and its first-order derivative is studied in a finite domain including the interior layer. On a uniform mesh, using the method of additive splitting of a singularity of the interior layer type, a special difference scheme is constructed that allows us to $\varepsilon$-uniformly approximate both the solution to the boundary value problem and its first-order derivative in $x$ with convergence orders close to 1 and 0.5, respectively. The efficiency of the constructed scheme is illustrated by numerical experiments.
Key words: Black–Scholes equation, singularly perturbed parabolic equation, nonsmooth initial data, interior layer, difference scheme, additive splitting of singularities, convergence.
Received: 10.07.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 3, Pages 442–462
DOI: https://doi.org/10.1134/S0965542507030098
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: S. Li, G. I. Shishkin, L. P. Shishkina, “Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data”, Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007), 460–480; Comput. Math. Math. Phys., 47:3 (2007), 442–462
Citation in format AMSBIB
\Bibitem{LiShiShi07}
\by S.~Li, G.~I.~Shishkin, L.~P.~Shishkina
\paper Approximation of the solution and its derivative for the singularly perturbed Black--Scholes equation with nonsmooth initial data
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 3
\pages 460--480
\mathnet{http://mi.mathnet.ru/zvmmf318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2348295}
\zmath{https://zbmath.org/?q=an:05200994}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 3
\pages 442--462
\crossref{https://doi.org/10.1134/S0965542507030098}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247123318}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf318
  • https://www.mathnet.ru/eng/zvmmf/v47/i3/p460
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :124
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024