Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 3, Pages 407–420 (Mi zvmmf498)  

This article is cited in 5 scientific papers (total in 5 papers)

Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: The initial value problem on a line for singularly perturbed parabolic equations with convective terms is investigated. The first-and the second-order space derivatives are multiplied by the parameters $\varepsilon_1$ and $\varepsilon_2$, respectively, which may take arbitrarily small values. The right-hand side of the equations has a discontinuity of the first kind on the set $\bar\gamma=[x=0]\times[0,T]$. Depending on the relation between the parameters, the appearing transient layers can be parabolic or regular, and the “intensity” of the layer (the maximum of the singular component) on the left and on the right of $\bar\gamma$ can be substantially different. If the parameter $\varepsilon_2$ at the convective term is finite, the transient layer is weak. For the initial value problems under consideration, the condensing grid method is used to construct finite difference schemes whose solutions converge (in the discrete maximum norm) to the exact solution uniformly with respect to $\varepsilon_1$ and $\varepsilon_2$ (when $\varepsilon_2$ is finite and, therefore, the transient layers are weak, no condensing grids are required).
Key words: singularly perturbed parabolic equations, transient layers of the solution, condensing grids, finite difference schemes.
Received: 03.10.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 3, Pages 388–401
DOI: https://doi.org/10.1134/S0965542506030067
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side”, Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006), 407–420; Comput. Math. Math. Phys., 46:3 (2006), 388–401
Citation in format AMSBIB
\Bibitem{Shi06}
\by G.~I.~Shishkin
\paper Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a~discontinuous right-hand side
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 3
\pages 407--420
\mathnet{http://mi.mathnet.ru/zvmmf498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2260298}
\zmath{https://zbmath.org/?q=an:05200913}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 3
\pages 388--401
\crossref{https://doi.org/10.1134/S0965542506030067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746100252}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf498
  • https://www.mathnet.ru/eng/zvmmf/v46/i3/p407
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :130
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024