Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 8, Pages 1416–1436 (Mi zvmmf4735)  

This article is cited in 11 scientific papers (total in 11 papers)

The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: The Dirichlet problem for a singularly perturbed parabolic reaction-diffusion equation with a piecewise continuous initial condition in a rectangular domain is considered. The higher order derivative in the equation is multiplied by a parameter $\varepsilon^2$, where $\varepsilon\in(0,1]$. When $\varepsilon$ is small, a boundary and an interior layer (with the characteristic width $\varepsilon$) appear, respectively, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the reduced equation passing through the discontinuity point of the initial function; for fixed $\varepsilon$, these layers have limited smoothness. Using the method of additive splitting of singularities (induced by the discontinuities of the initial function and its low-order derivatives) and the condensing grid method (piecewise uniform grids that condense in a neighborhood of the boundary layers), a finite difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of the mesh points in $x$ and $t$, respectively. Based on the Richardson technique, a scheme that converges $\varepsilon$-uniformly at a rate of $ON^{-3}+N_0^{-2})$ is constructed. It is proved that the Richardson technique cannot construct a scheme that converges in $\varepsilon$-uniformly in $x$ with an order greater than three.
Key words: singularly perturbed boundary value problem, parabolic reaction-diffusion equation, piecewise continuous initial condition, grid approximation, method of additive splitting of singularities, special grids, $\varepsilon$-uniform convergence, Richardson technique.
Received: 20.10.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 8, Pages 1348–1368
DOI: https://doi.org/10.1134/S0965542509080065
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition”, Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1416–1436; Comput. Math. Math. Phys., 49:8 (2009), 1348–1368
Citation in format AMSBIB
\Bibitem{Shi09}
\by G.~I.~Shishkin
\paper The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a~discontinuous initial condition
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 8
\pages 1416--1436
\mathnet{http://mi.mathnet.ru/zvmmf4735}
\zmath{https://zbmath.org/?q=an:05649684}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 8
\pages 1348--1368
\crossref{https://doi.org/10.1134/S0965542509080065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269218300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350584720}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4735
  • https://www.mathnet.ru/eng/zvmmf/v49/i8/p1416
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024