Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 1, Pages 202–220 (Mi timm16)  

This article is cited in 1 scientific paper (total in 1 paper)

Sequential and parallel domain decomposition methods for a singularly perturbed parabolic convection-diffusion equation

I. V. Tselischeva, G. I. Shishkin
Full-text PDF (358 kB) Citations (1)
References:
Abstract: A boundary value problem for a singularly perturbed parabolic convection–diffusion equation is considered in a rectangular domain in $x$ and $t$; the perturbation parameter $\varepsilon$ multiplying the highest derivative takes arbitrary values in the half-open interval $(0,1]$. For the boundary value problem, we construct a scheme based on the method of lines in $x$ passing through $N_0+1$ points of the mesh with respect to $t$. To solve the problem on a set of intervals, we apply a domain decomposition method (on overlapping subdomains with the overlap width $\delta$), which is a modification of the Schwarz method. For the continual schemes of the decomposition method, we study how sequential and parallel computations, the order of priority in which the subproblems are sequentially solved on the subdomains, and the value of the parameter $\varepsilon$ (as well as the values of $N_0$, $\delta$) influence the convergence rate of the decomposition scheme (as $N_0\to\infty$), and also computational costs for solving the scheme and time required for its solution (unless a prescribed tolerance is achieved). For convection–diffusion equations, in contrast to reaction-diffusion ones, the sequential scheme turns out to be more efficient than the parallel scheme.
Received: 20.02.2007
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2008, Volume 261, Issue 1, Pages S206–S227
DOI: https://doi.org/10.1134/S0081543808050180
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: I. V. Tselischeva, G. I. Shishkin, “Sequential and parallel domain decomposition methods for a singularly perturbed parabolic convection-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 1, 2008, 202–220; Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S206–S227
Citation in format AMSBIB
\Bibitem{TseShi08}
\by I.~V.~Tselischeva, G.~I.~Shishkin
\paper Sequential and parallel domain decomposition methods for a~singularly perturbed parabolic convection-diffusion equation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 1
\pages 202--220
\mathnet{http://mi.mathnet.ru/timm16}
\elib{https://elibrary.ru/item.asp?id=11929814}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2008
\vol 261
\issue , suppl. 1
\pages S206--S227
\crossref{https://doi.org/10.1134/S0081543808050180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208363600018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149164342}
Linking options:
  • https://www.mathnet.ru/eng/timm16
  • https://www.mathnet.ru/eng/timm/v14/i1/p202
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:488
    Full-text PDF :142
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024