Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 4, Pages 665–678 (Mi zvmmf4860)  

This article is cited in 1 scientific paper (total in 1 paper)

A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives

G. I. Shishkin, L. P. Shishkina

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219 Russia
Full-text PDF (246 kB) Citations (1)
References:
Abstract: A boundary value problem for a singularly perturbed elliptic reaction-diffusion equation in a vertical strip is considered. The derivatives are written in divergent form. The derivatives in the differential equation are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval $(0, 1]$. As $\varepsilon\to0$, a boundary layer appears in the solution of this problem. Using the integrointerpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge $\varepsilon$-uniformly at a rate of $O(N_1^{-2}\ln^2N_1+N_2^{-2})$, where $N_1+1$ and $N_2+1$ are the number of mesh points on the $x_1$-axis and the minimal number of mesh points on a unit interval of the $x_2$-axis respectively. The normalized difference derivatives $\varepsilon^k(\partial^k/\partial x_1^k)u(x)$ ($k = 1$$2$), which are $\varepsilon$-uniformly bounded and approximate the normalized derivatives in the direction across the boundary layer, and the derivatives along the boundary layer $(\partial^k/\partial x_2^k)u(x)$ ($k = 1$$2$) converge $\varepsilon$-uniformly at the same rate.
Key words: boundary value problem, elliptic reaction-diffusion equation, perturbation parameter, boundary layer, conservative finite difference scheme, piecewise uniform grid, flux grid, $\varepsilon$-uniform convergence, approximation of solutions and their derivatives.
Received: 27.11.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 4, Pages 633–645
DOI: https://doi.org/10.1134/S0965542510040068
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: G. I. Shishkin, L. P. Shishkina, “A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010), 665–678; Comput. Math. Math. Phys., 50:4 (2010), 633–645
Citation in format AMSBIB
\Bibitem{ShiShi10}
\by G.~I.~Shishkin, L.~P.~Shishkina
\paper A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 4
\pages 665--678
\mathnet{http://mi.mathnet.ru/zvmmf4860}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761704}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..633S}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 4
\pages 633--645
\crossref{https://doi.org/10.1134/S0965542510040068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277337600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952145009}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4860
  • https://www.mathnet.ru/eng/zvmmf/v50/i4/p665
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :106
    References:90
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024