Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 9, Pages 1617–1637 (Mi zvmmf414)  

This article is cited in 10 scientific papers (total in 10 papers)

The use of solutions on embedded grids for the approximation of singularly perturbed parabolic convection-diffusion equations on adapted grids

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: The Dirichlet problem on a closed interval for a parabolic convection-diffusion equation is considered. The higher order derivative is multiplied by a parameter $\varepsilon$ taking arbitrary values in the semi-open interval (0, 1]. For the boundary value problem, a finite difference scheme on a posteriori adapted grids is constructed. The classical approximations of the equation on uniform grids in the main domain are used; in some subdomains, these grids are subjected to refinement to improve the grid solution. The subdomains in which the grid should be refined are determined using the difference of the grid solutions of intermediate problems solved on embedded grids. Special schemes on a posteriori piecewise uniform grids are constructed that make it possible to obtain approximate solutions that converge almost $\varepsilon$-uniformly, i.e., with an error that weakly depends on the parameter $\varepsilon$: $|u(x,t)-z(x,t)|\le M[N_1^{-1}\ln^2N_1+N_0^{-1}\ln N_0+\varepsilon^{-1}N_1^{-K}\ln^{K-1}N_1]$, $(x,t)\in\bar G_h$, where $N_1+1$ и $N_0+1$ are the numbers of grid points in $x$ and $t$, respectively; $K$ is the number of refinement iterations (with respect to $x$) in the adapted grid; and $M=M(K)$. Outside the $\sigma$-neighborhood of the outflow part of the boundary (in a neighborhood of the boundary layer), the scheme converges $\varepsilon$-uniformly at a rate $O(N_1^{-1}\ln^2N_1+N_0^{-1}\ln N_0)$, причем $\sigma\le MN_1^{-K+1}\ln^{K-1}N_1$ for $K\ge2$.
Key words: singularly perturbed parabolic convection-diffusion equation, numerical embedded grid method, adapted grids, $\varepsilon$-uniform convergence.
Received: 07.04.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 9, Pages 1539–1559
DOI: https://doi.org/10.1134/S0965542506090077
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “The use of solutions on embedded grids for the approximation of singularly perturbed parabolic convection-diffusion equations on adapted grids”, Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006), 1617–1637; Comput. Math. Math. Phys., 46:9 (2006), 1539–1559
Citation in format AMSBIB
\Bibitem{Shi06}
\by G.~I.~Shishkin
\paper The use of solutions on embedded grids for the approximation of singularly perturbed parabolic
convection-diffusion equations on adapted grids
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 9
\pages 1617--1637
\mathnet{http://mi.mathnet.ru/zvmmf414}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2287662}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 9
\pages 1539--1559
\crossref{https://doi.org/10.1134/S0965542506090077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748995922}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf414
  • https://www.mathnet.ru/eng/zvmmf/v46/i9/p1617
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024