Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 1, Pages 255–271 (Mi timm542)  

This article is cited in 10 scientific papers (total in 10 papers)

Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation

G. I. Shishkin, L. P. Shishkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: A Dirichlet problem is considered for a singularly perturbed ordinary differential reaction-diffusion equation. For this problem, a new approach is developed in order to construct difference schemes convergent uniformly with respect to the perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. The approach is based on the decomposition of a discrete solution into regular and singular components, which are solutions of discrete subproblems on uniform grids. Using the asymptotic construction technique, a difference scheme of the solution decomposition method is constructed that converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-2}\ln^{-2}N)$, where $N+1$ is the number of nodes in the grids used; for fixed values of the parameter $\varepsilon$, the scheme converges at the rate $\mathcal O(N^{-2})$. Using the Richardson technique, an improved scheme of the solution decomposition method is constructed, which converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-4 }\ln^{-4}N)$.
Keywords: singularly perturbed boundary value problem, ordinary differential reaction-diffusion equation, decomposition of a discrete solution, asymptotic construction technique, difference scheme of the solution decomposition method, uniform grids, $\varepsilon$-uniform convergence, Richardson technique, improved scheme of the solution decomposition method.
Received: 19.11.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 272, Issue 1, Pages S197–S214
DOI: https://doi.org/10.1134/S0081543811020155
Bibliographic databases:
Document Type: Article
UDC: 519.624
Language: Russian
Citation: G. I. Shishkin, L. P. Shishkina, “Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 1, 2010, 255–271; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S197–S214
Citation in format AMSBIB
\Bibitem{ShiShi10}
\by G.~I.~Shishkin, L.~P.~Shishkina
\paper Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 1
\pages 255--271
\mathnet{http://mi.mathnet.ru/timm542}
\elib{https://elibrary.ru/item.asp?id=13073004}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 272
\issue , suppl. 1
\pages S197--S214
\crossref{https://doi.org/10.1134/S0081543811020155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289527400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79954571661}
Linking options:
  • https://www.mathnet.ru/eng/timm542
  • https://www.mathnet.ru/eng/timm/v16/i1/p255
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024