Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 4, Pages 660–673 (Mi zvmmf156)  

This article is cited in 6 scientific papers (total in 6 papers)

Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle

G. I. Shishkin, L. P. Shishkina

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
References:
Abstract: The Dirichlet problem for a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle is considered. The higher order derivatives of the equations are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval (0, 1]. When $\varepsilon$ vanishes, the system of parabolic equations degenerates into a system of ordinary differential equations with respect to $t$. When $\varepsilon$ tends to zero, a parabolic boundary layer with a characteristic width $\varepsilon$ appears in a neighborhood of the boundary. Using the condensing grid technique and the classical finite difference approximations of the boundary value problem, a special difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2N+N_0^{-1})$, where $N=\min_s N_s$, $N_s+1$ and $N_s+1$ are the numbers of mesh points on the axes $x_s$ and $t$, respectively.
Key words: initial boundary value problem in a rectangle, perturbation parameter $\varepsilon$, system of parabolic reaction-diffusion equations, finite difference approximation, parabolic boundary layer, a priori bounds on the solution and its derivatives, $\varepsilon$-uniform convergence.
Received: 20.04.2007
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 4, Pages 627–640
DOI: https://doi.org/10.1134/S0965542508040106
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, L. P. Shishkina, “Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle”, Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008), 660–673; Comput. Math. Math. Phys., 48:4 (2008), 627–640
Citation in format AMSBIB
\Bibitem{ShiShi08}
\by G.~I.~Shishkin, L.~P.~Shishkina
\paper Approximation of a~system of singularly perturbed reaction-diffusion parabolic equations in a~rectangle
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 4
\pages 660--673
\mathnet{http://mi.mathnet.ru/zvmmf156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2432807}
\zmath{https://zbmath.org/?q=an:1164.35400}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 4
\pages 627--640
\crossref{https://doi.org/10.1134/S0965542508040106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262333800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43249126090}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf156
  • https://www.mathnet.ru/eng/zvmmf/v48/i4/p660
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :115
    References:82
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024