Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2007, Volume 13, Number 2, Pages 218–233 (Mi timm101)  

This article is cited in 8 scientific papers (total in 8 papers)

Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions

G. I. Shishkin
Full-text PDF (353 kB) Citations (8)
References:
Abstract: The Dirichlet problem is considered for a singularly perturbed parabolic reaction-diffusion equation with piecewise continuous initial-boundary conditions in a rectangular domain. The highest derivative in the equation is multiplied by a parameter $\varepsilon^2$, $\varepsilon\in (0,1]$. For small values of the parameter $\varepsilon$, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the limit equation passing through the point of discontinuity of the initial function, there arise a boundary layer and an interior layer (of characteristic width $\varepsilon$), respectively, which have bounded smoothness for fixed values of the parameter $\varepsilon$. Using the method of additive splitting of singularities (generated by discontinuities of the boundary function and its low-order derivatives), as well as the method of condensing grids (piecewise uniform grids condensing in a neighborhood of boundary layers), we construct and investigate special difference schemes that converge $\varepsilon$-uniformly with the second order of accuracy in $x$ and the first order of accuracy in $t$, up to logarithmic factors.
Received: 19.03.2007
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2007, Volume 259, Issue 2, Pages S213–S230
DOI: https://doi.org/10.1134/S0081543807060156
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 2, 2007, 218–233; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S213–S230
Citation in format AMSBIB
\Bibitem{Shi07}
\by G.~I.~Shishkin
\paper Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2007
\vol 13
\issue 2
\pages 218--233
\mathnet{http://mi.mathnet.ru/timm101}
\elib{https://elibrary.ru/item.asp?id=12040781}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2007
\vol 259
\issue , suppl. 2
\pages S213--S230
\crossref{https://doi.org/10.1134/S0081543807060156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38949177520}
Linking options:
  • https://www.mathnet.ru/eng/timm101
  • https://www.mathnet.ru/eng/timm/v13/i2/p218
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :96
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024