Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tankeev, Sergey Gennadievich

Statistics Math-Net.Ru
Total publications: 54
Scientific articles: 54
Presentations: 2

Number of views:
This page:5095
Abstract pages:21006
Full texts:6594
References:2784
Tankeev, Sergey Gennadievich
Professor
Doctor of physico-mathematical sciences (1985)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
Birth date: 28.02.1947
E-mail:
Keywords: algebraic cycles, Brauer groups, $l$-adic representations, conjectures of Hodge, Tate, Mumford–Tate, the Grothendieck standard conjecture (of Lefschetz type), the Friedlander–Mazur conjecture, arithmetic model, K3 surface, Enriques surface, Kalabi–Yau variety, hyperkahler variety.
UDC: 513.6, 512.6, 512.7
MSC: 14J20, 14K05, 14C30

Subject:

The Hodge conjecture is proved for all simple abelian varieties of prime dimension. The microweight conjecture holds for the $l$-adic representation associated to the Tate module of abelian variety over a number field. The finiteness of the Brauer group holds for an arithmetic model of a hyperkahler variety with the second Betti number greater than 3 over a number field. For all smooth complex 3-dimensional projective varieties of non-basic type the Grothendieck standard conjecture (of Lefschetz type) on algebraicity of the Hodge operator star is true.

Biography

Graduated from A.N. Kolmogorov's physico-mathematical boarding-school (1965). Graduated from Faculty of Mathematics and Mechanics of M.V. Lomonosov Moscow State University (MSU) in 1970 (department of algebra). Ph.D. thesis (MSU) was defended in 1973. D.Sci. thesis (MSU) was defended in 1985.

   
Main publications:
  • Tankeev S.G., Cycles on simple abelian varieties of prime dimension, Math. USSR-Izv., 20:1 (1983), 157-171.
  • Tankeev S.G., On weights of $l$-adic representation and arithmetic of Frobenius eigenvalues, Russian Acad. Sci. Izv. Math., 63:1 (1999), 181-218.
  • Tankeev S.G., On the standard conjecture of Lefschetz type for complex projective 3-dimensional varieties. II , Izv. Math. 75:5 (2011), 1047-1062.
  • Tankeev S.G., On the Brauer group of an arithmetic model of a hyperkahler variety over a number field, Izv. Math.79:3 (2015).

https://www.mathnet.ru/eng/person8783
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/190414

Publications in Math-Net.Ru Citations
2024
1. S. G. Tankeev, “On the standard conjecture for a fourfold with $1$-parameter fibration by Abelian varieties”, Izv. RAN. Ser. Mat., 88:2 (2024),  153–183  mathnet  mathscinet; Izv. Math., 88:2 (2024), 339–368  isi  scopus
2023
2. S. G. Tankeev, “Hodge and Mumford–Tate groups of an Abelian Variety, Complex Multiplication, and Frobenius Elements”, Mat. Zametki, 113:4 (2023),  622–625  mathnet  mathscinet; Math. Notes, 113:4 (2023), 601–604  scopus
2022
3. S. G. Tankeev, “On the standard conjecture for compactifications of Néron models of 4-dimensional Abelian varieties”, Izv. RAN. Ser. Mat., 86:4 (2022),  192–232  mathnet  mathscinet; Izv. Math., 86:4 (2022), 797–835  isi  scopus 1
4. S. G. Tankeev, “On Algebraic Isomorphisms of the Rational Cohomology of Künnemann's Compactifications of the Néron Model of an Abelian Variety without Complex Multiplication”, Mat. Zametki, 111:4 (2022),  636–637  mathnet; Math. Notes, 111:4 (2022), 652–653  scopus
2021
5. S. G. Tankeev, “On the standard conjecture for projective compactifications of Néron models of $3$-dimensional Abelian varieties”, Izv. RAN. Ser. Mat., 85:1 (2021),  154–186  mathnet  mathscinet  elib; Izv. Math., 85:1 (2021), 145–175  isi  scopus 3
6. S. G. Tankeev, “On the Standard Conjecture for Compactifications of Néron Models of Three-Dimensional Abelian Varieties with Multiplications in an Imaginary Quadratic Field”, Mat. Zametki, 109:3 (2021),  479–480  mathnet  mathscinet  elib; Math. Notes, 109:3 (2021), 498–499  isi  scopus
2020
7. S. G. Tankeev, “On the standard conjecture for a $3$-dimensional variety fibred by curves with a non-injective Kodaira–Spencer map”, Izv. RAN. Ser. Mat., 84:5 (2020),  211–232  mathnet  mathscinet  elib; Izv. Math., 84:5 (2020), 1016–1035  isi  scopus 4
8. S. G. Tankeev, “On algebraic isomorphisms of rational cohomology of a Künneman compactification of the Néron minimal model”, Sib. Èlektron. Mat. Izv., 17 (2020),  89–125  mathnet  isi 3
2019
9. S. G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. RAN. Ser. Mat., 83:3 (2019),  213–256  mathnet  mathscinet  elib; Izv. Math., 83:3 (2019), 613–653  isi  scopus 5
10. S. G. Tankeev, “On the Standard Conjecture for a 3-Dimensional Variety Fibered over a Surface”, Mat. Zametki, 105:4 (2019),  643–644  mathnet  mathscinet  elib; Math. Notes, 105:4 (2019), 636–637  isi  scopus
2017
11. S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. RAN. Ser. Mat., 81:6 (2017),  199–231  mathnet  elib; Izv. Math., 81:6 (2017), 1253–1285  isi  scopus 7
2015
12. S. G. Tankeev, “On the Brauer group of an arithmetic model of a hyperkähler variety over a number field”, Izv. RAN. Ser. Mat., 79:3 (2015),  203–224  mathnet  mathscinet  zmath  elib; Izv. Math., 79:3 (2015), 623–644  isi  scopus 2
13. S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. RAN. Ser. Mat., 79:1 (2015),  185–216  mathnet  mathscinet  zmath  elib; Izv. Math., 79:1 (2015), 177–207  isi  scopus 8
2014
14. S. G. Tankeev, “On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Néron minimal models”, Izv. RAN. Ser. Mat., 78:1 (2014),  181–214  mathnet  mathscinet  zmath  elib; Izv. Math., 78:1 (2014), 169–200  isi  elib  scopus 4
15. S. G. Tankeev, “On the Finiteness of the Brauer Group of an Arithmetic Scheme”, Mat. Zametki, 95:1 (2014),  136–149  mathnet  mathscinet  elib; Math. Notes, 95:1 (2014), 122–133  isi  elib  scopus 4
2012
16. S. G. Tankeev, “On the standard conjecture for complex 4-dimensional elliptic varieties”, Izv. RAN. Ser. Mat., 76:5 (2012),  119–142  mathnet  mathscinet  zmath  elib; Izv. Math., 76:5 (2012), 967–990  isi  elib  scopus 3
2011
17. S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. RAN. Ser. Mat., 75:5 (2011),  177–194  mathnet  mathscinet  zmath  elib; Izv. Math., 75:5 (2011), 1047–1062  isi  elib  scopus 25
2010
18. S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. RAN. Ser. Mat., 74:1 (2010),  175–196  mathnet  mathscinet  zmath  elib; Izv. Math., 74:1 (2010), 167–187  isi  elib  scopus 14
2008
19. S. G. Tankeev, “On algebraic cycles on complex Abelian schemes over smooth projective curves”, Izv. RAN. Ser. Mat., 72:4 (2008),  197–224  mathnet  mathscinet  zmath  elib; Izv. Math., 72:4 (2008), 817–844  isi  elib  scopus
2007
20. S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. RAN. Ser. Mat., 71:3 (2007),  197–224  mathnet  mathscinet  zmath  elib; Izv. Math., 71:3 (2007), 629–655  isi  elib  scopus 15
2005
21. S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. RAN. Ser. Mat., 69:1 (2005),  145–164  mathnet  mathscinet  zmath  elib; Izv. Math., 69:1 (2005), 143–162  isi  elib  scopus 9
2003
22. S. G. Tankeev, “On the Brauer group of an arithmetic scheme. II”, Izv. RAN. Ser. Mat., 67:5 (2003),  155–176  mathnet  mathscinet  zmath  elib; Izv. Math., 67:5 (2003), 1007–1029  isi  scopus 7
23. S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. RAN. Ser. Mat., 67:3 (2003),  183–224  mathnet  mathscinet  zmath; Izv. Math., 67:3 (2003), 597–635  isi  scopus 14
24. S. G. Tankeev, “On the Conjectures of Artin and Shafarevich–Tate”, Trudy Mat. Inst. Steklova, 241 (2003),  254–264  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 241 (2003), 238–248
2002
25. S. G. Tankeev, “The arithmetic and geometry of a generic hypersurface section”, Izv. RAN. Ser. Mat., 66:2 (2002),  173–204  mathnet  mathscinet  zmath; Izv. Math., 66:2 (2002), 393–424  scopus 5
2001
26. S. G. Tankeev, “On the Brauer group of an arithmetic scheme”, Izv. RAN. Ser. Mat., 65:2 (2001),  155–186  mathnet  mathscinet  zmath  elib; Izv. Math., 65:2 (2001), 357–388  scopus 7
27. S. G. Tankeev, “Cycles of small codimension on a simple abelian variety”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 70 (2001),  206–235  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 106:5 (2001), 3365–3382
28. S. G. Tankeev, “On the Mumford–Tate conjecture for abelian varieties”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 33 (2001),  213–241  mathnet  mathscinet  zmath; J. Math. Sci., 81:3 (1996), 2719–2737 2
2000
29. S. G. Tankeev, “On the Brauer group”, Izv. RAN. Ser. Mat., 64:4 (2000),  141–162  mathnet  mathscinet  zmath  elib; Izv. Math., 64:4 (2000), 787–806  isi  scopus 5
1999
30. S. G. Tankeev, “Cycles of small codimension on a simple $2p$- or $4p$-dimensional Abelian variety”, Izv. RAN. Ser. Mat., 63:6 (1999),  167–208  mathnet  mathscinet  zmath  elib; Izv. Math., 63:6 (1999), 1221–1262  isi  scopus 1
31. S. G. Tankeev, “On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues”, Izv. RAN. Ser. Mat., 63:1 (1999),  185–224  mathnet  mathscinet  zmath  elib; Izv. Math., 63:1 (1999), 181–218  isi  scopus 6
1998
32. S. G. Tankeev, “On Frobenius traces”, Izv. RAN. Ser. Mat., 62:1 (1998),  165–200  mathnet  mathscinet  zmath  elib; Izv. Math., 62:1 (1998), 157–190  isi  scopus 2
1996
33. S. G. Tankeev, “Cycles on Abelian varieties and exceptional numbers”, Izv. RAN. Ser. Mat., 60:2 (1996),  159–194  mathnet  mathscinet  zmath; Izv. Math., 60:2 (1996), 391–424  isi  scopus 11
1995
34. S. G. Tankeev, “Surfaces of type K3 over number fields and the Mumford–Tate conjecture. II”, Izv. RAN. Ser. Mat., 59:3 (1995),  179–206  mathnet  mathscinet  zmath; Izv. Math., 59:3 (1995), 619–646  isi 12
1994
35. S. G. Tankeev, “Algebraic cycles on an abelian variety without complex multiplication”, Izv. RAN. Ser. Mat., 58:3 (1994),  103–126  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 44:3 (1995), 531–553  isi 3
36. S. G. Tankeev, “Cycles on an Abelian variety without complex multiplication and $l$-adic representations”, Uspekhi Mat. Nauk, 49:1(295) (1994),  225–226  mathnet  mathscinet  zmath; Russian Math. Surveys, 49:1 (1994), 247  isi
1993
37. S. G. Tankeev, “Abelian varieties and the general Hodge conjecture”, Izv. RAN. Ser. Mat., 57:4 (1993),  192–206  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 43:1 (1994), 179–191  isi 4
1991
38. S. G. Tankeev, “Kuga–Satake abelian varieties and $l$-adic representations”, Izv. Akad. Nauk SSSR Ser. Mat., 55:4 (1991),  877–889  mathnet  mathscinet  zmath; Math. USSR-Izv., 39:1 (1992), 855–867  isi 2
1990
39. S. G. Tankeev, “K3 surfaces over number fields and the Mumford–Tate conjecture”, Izv. Akad. Nauk SSSR Ser. Mat., 54:4 (1990),  846–861  mathnet  mathscinet  zmath; Math. USSR-Izv., 37:1 (1991), 191–208 8
1988
40. S. G. Tankeev, “K3 surfaces over number fields and $l$-adic representations”, Izv. Akad. Nauk SSSR Ser. Mat., 52:6 (1988),  1252–1271  mathnet  mathscinet  zmath; Math. USSR-Izv., 33:3 (1989), 575–595 8
1987
41. S. G. Tankeev, “Cycles on simple Abelian varieties of prime dimension over number fields”, Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1214–1227  mathnet  mathscinet  zmath; Math. USSR-Izv., 31:3 (1988), 527–540 9
1983
42. S. G. Tankeev, “On cycles on Abelian varieties of prime dimension over finite or number fields”, Izv. Akad. Nauk SSSR Ser. Mat., 47:2 (1983),  356–365  mathnet  mathscinet  zmath; Math. USSR-Izv., 22:2 (1984), 329–337 3
1982
43. S. G. Tankeev, “Cycles on simple Abelian varieties of prime dimension”, Izv. Akad. Nauk SSSR Ser. Mat., 46:1 (1982),  155–170  mathnet  mathscinet  zmath; Math. USSR-Izv., 20:1 (1983), 157–171 16
1981
44. S. G. Tankeev, “On algebraic cycles on simple 5-dimensional Abelian varieties”, Izv. Akad. Nauk SSSR Ser. Mat., 45:4 (1981),  793–823  mathnet  mathscinet  zmath; Math. USSR-Izv., 19:1 (1982), 95–123 10
45. S. G. Tankeev, “On algebraic cycles on surfaces and Abelian varieties”, Izv. Akad. Nauk SSSR Ser. Mat., 45:2 (1981),  398–434  mathnet  mathscinet  zmath; Math. USSR-Izv., 18:2 (1982), 349–380 19
1979
46. S. G. Tankeev, “On algebraic cycles on Abelian varieties. II”, Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979),  418–429  mathnet  mathscinet  zmath; Math. USSR-Izv., 14:2 (1980), 383–394  isi 8
1978
47. S. G. Tankeev, “On algebraic cycles on Abelian varieties”, Izv. Akad. Nauk SSSR Ser. Mat., 42:3 (1978),  667–696  mathnet  mathscinet  zmath; Math. USSR-Izv., 12:3 (1978), 617–643 3
1977
48. S. G. Tankeev, “On homomorphisms of Abelian schemes. II”, Izv. Akad. Nauk SSSR Ser. Mat., 41:6 (1977),  1231–1251  mathnet  mathscinet  zmath; Math. USSR-Izv., 11:6 (1977), 1175–1194 2
1976
49. S. G. Tankeev, “On homomorphisms of Abelian schemes”, Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976),  774–790  mathnet  mathscinet  zmath; Math. USSR-Izv., 10:4 (1976), 731–747 3
1975
50. S. G. Tankeev, “Pluricanonical mappings of algebraic surfaces of general type”, Uspekhi Mat. Nauk, 30:6(186) (1975),  184  mathnet  mathscinet  zmath
1972
51. S. G. Tankeev, “On a global theory of moduli of algebraic surfaces of general type”, Izv. Akad. Nauk SSSR Ser. Mat., 36:6 (1972),  1220–1236  mathnet  mathscinet  zmath; Math. USSR-Izv., 6:6 (1972), 1200–1216 2
1971
52. S. G. Tankeev, “On $n$-dimensional canonically polarized varieties and varieties of fundamental type”, Izv. Akad. Nauk SSSR Ser. Mat., 35:1 (1971),  31–44  mathnet  mathscinet  zmath; Math. USSR-Izv., 5:1 (1971), 29–43 5
53. S. G. Tankeev, “Моноидальные преобразования и алгебраические соответствия”, Izv. RAN. Ser. Mat.,  0  mathnet

Presentations in Math-Net.Ru
1. О стандартной гипотезе Гротендика типа Лефшеца
S. G. Tankeev
Conference on algebra, algebraic geometry, and number theory on the occasion of academician Igor Rostislavovich Shafarevich 100th birthday
June 9, 2023 12:20   
2. Редукция гипотез Ходжа и Тэйта к случаю рациональных многообразий
S. G. Tankeev
Seminar by Algebra Department
October 5, 2004

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024