Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 1, Pages 157–190
DOI: https://doi.org/10.1070/im1998v062n01ABEH000189
(Mi im189)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Frobenius traces

S. G. Tankeev

Vladimir State University
References:
Abstract: In this paper we discuss a certain Diophantine property of Frobenius traces associated with an Abelian variety over a number field $k$ and apply it to prove the Mumford–Tate conjecture for 4$p$-dimensional Abelian varieties $J$ over $k$, where $p$ is a prime number, $p\geqslant 17$, or (under certain weak assumptions) $\operatorname{End}^0(J\otimes\overline k)$ is an imaginary quadratic extension of $\mathbb Q$.
Received: 05.03.1996
Bibliographic databases:
MSC: 14K15, 14G20
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On Frobenius traces”, Izv. Math., 62:1 (1998), 157–190
Citation in format AMSBIB
\Bibitem{Tan98}
\by S.~G.~Tankeev
\paper On Frobenius traces
\jour Izv. Math.
\yr 1998
\vol 62
\issue 1
\pages 157--190
\mathnet{http://mi.mathnet.ru//eng/im189}
\crossref{https://doi.org/10.1070/im1998v062n01ABEH000189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1622262}
\zmath{https://zbmath.org/?q=an:0937.14035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074366100005}
\elib{https://elibrary.ru/item.asp?id=13287308}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746697006}
Linking options:
  • https://www.mathnet.ru/eng/im189
  • https://doi.org/10.1070/im1998v062n01ABEH000189
  • https://www.mathnet.ru/eng/im/v62/i1/p165
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:538
    Russian version PDF:243
    English version PDF:22
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024