Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 6, Pages 1221–1262
DOI: https://doi.org/10.1070/im1999v063n06ABEH000272
(Mi im272)
 

This article is cited in 1 scientific paper (total in 1 paper)

Cycles of small codimension on a simple $2p$- or $4p$-dimensional Abelian variety

S. G. Tankeev

Vladimir State University
References:
Abstract: Let $J$ be a simple $2p$- or $4p$-dimensional Abelian variety over the field of complex numbers, where $p\ne 5$ is a prime number. Assume that one of the following conditions holds:
1) $\operatorname{Cent\,End}^0(J)$ is a totally real field of degree 1, 2 or 4 over $\mathbb Q$;
2) $J$ is a simple $2p$-dimensional Abelian variety of CM-type $(K,\Phi)$ such that $K/\mathbb Q$ is a normal extension;
3) $J$ is a simple $2p$-dimensional Abelian variety such that $\operatorname{End}^0(J)$ is an imaginary quadratic extension of $\mathbb Q$.
Then for every positive integer $r<p$ the $\mathbb Q$-space $H^{2r}(J,\mathbb Q)\cap H^{r,r}$ is spanned by cohomology classes of intersections of divisors.
Received: 10.02.1998
Bibliographic databases:
MSC: 14K05, 14C30
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “Cycles of small codimension on a simple $2p$- or $4p$-dimensional Abelian variety”, Izv. Math., 63:6 (1999), 1221–1262
Citation in format AMSBIB
\Bibitem{Tan99}
\by S.~G.~Tankeev
\paper Cycles of small codimension on a~simple $2p$- or $4p$-dimensional Abelian variety
\jour Izv. Math.
\yr 1999
\vol 63
\issue 6
\pages 1221--1262
\mathnet{http://mi.mathnet.ru//eng/im272}
\crossref{https://doi.org/10.1070/im1999v063n06ABEH000272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1748565}
\zmath{https://zbmath.org/?q=an:0962.14004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086908900006}
\elib{https://elibrary.ru/item.asp?id=13314637}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746672586}
Linking options:
  • https://www.mathnet.ru/eng/im272
  • https://doi.org/10.1070/im1999v063n06ABEH000272
  • https://www.mathnet.ru/eng/im/v63/i6/p167
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:435
    Russian version PDF:204
    English version PDF:22
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024