|
This article is cited in 2 scientific papers (total in 2 papers)
On homomorphisms of Abelian schemes. II
S. G. Tankeev
Abstract:
Let $k$ be a field of algebraic functions of one variable over the field $\mathbf C$ of complex numbers, let $S$ be the complete smooth model of $k$ over $\mathbf C$, and let $\mathscr I_i\to S$ ($i=1,2$) be the Néron models of Abelian varieties $I_i$ over $k$. Suppose that one of the following conditions holds:
1) The minimal models $\mathscr I_i\to S$ admit compactifications whose degenerate fibers are unions of normally crossing smooth irreducible components, and
$$
H^0(S,\mathscr Lie_S(\mathscr I_1)\otimes_{\mathscr O_S}\mathscr Lie_S(\mathscr I_2))=(0).
$$
2) The Abelian variety $I_1$ has totally degenerate reduction at a point $v$ of $k$, i.e. the algebraic group $\mathscr I_{1v}$ is an extension of a finite group by a torus.
Then for every prime number $l$ the canonical map
$$
\operatorname{Hom}_k(I_1,I_2)\otimes_\mathbf Z\mathbf Z_l\to\operatorname{Hom}_{\operatorname{Gal}(\bar k/k)}(T_l(I_1),T_l(I_2))
$$
is an isomorphism.
Bibliography: 17 titles.
Received: 18.11.1976
Citation:
S. G. Tankeev, “On homomorphisms of Abelian schemes. II”, Math. USSR-Izv., 11:6 (1977), 1175–1194
Linking options:
https://www.mathnet.ru/eng/im2069https://doi.org/10.1070/IM1977v011n06ABEH001765 https://www.mathnet.ru/eng/im/v41/i6/p1231
|
Statistics & downloads: |
Abstract page: | 260 | Russian version PDF: | 113 | English version PDF: | 15 | References: | 47 | First page: | 1 |
|