Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1977, Volume 11, Issue 6, Pages 1175–1194
DOI: https://doi.org/10.1070/IM1977v011n06ABEH001765
(Mi im2069)
 

This article is cited in 2 scientific papers (total in 2 papers)

On homomorphisms of Abelian schemes. II

S. G. Tankeev
References:
Abstract: Let $k$ be a field of algebraic functions of one variable over the field $\mathbf C$ of complex numbers, let $S$ be the complete smooth model of $k$ over $\mathbf C$, and let $\mathscr I_i\to S$ ($i=1,2$) be the Néron models of Abelian varieties $I_i$ over $k$. Suppose that one of the following conditions holds:
1) The minimal models $\mathscr I_i\to S$ admit compactifications whose degenerate fibers are unions of normally crossing smooth irreducible components, and
$$ H^0(S,\mathscr Lie_S(\mathscr I_1)\otimes_{\mathscr O_S}\mathscr Lie_S(\mathscr I_2))=(0). $$

2) The Abelian variety $I_1$ has totally degenerate reduction at a point $v$ of $k$, i.e. the algebraic group $\mathscr I_{1v}$ is an extension of a finite group by a torus.
Then for every prime number $l$ the canonical map
$$ \operatorname{Hom}_k(I_1,I_2)\otimes_\mathbf Z\mathbf Z_l\to\operatorname{Hom}_{\operatorname{Gal}(\bar k/k)}(T_l(I_1),T_l(I_2)) $$
is an isomorphism.
Bibliography: 17 titles.
Received: 18.11.1976
Bibliographic databases:
UDC: 513.6
MSC: Primary 14K05, 14G13, 14F30; Secondary 14K10, 14K30, 14H40, 14D10
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On homomorphisms of Abelian schemes. II”, Math. USSR-Izv., 11:6 (1977), 1175–1194
Citation in format AMSBIB
\Bibitem{Tan77}
\by S.~G.~Tankeev
\paper On homomorphisms of Abelian schemes.~II
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 6
\pages 1175--1194
\mathnet{http://mi.mathnet.ru//eng/im2069}
\crossref{https://doi.org/10.1070/IM1977v011n06ABEH001765}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=480536}
\zmath{https://zbmath.org/?q=an:0368.14015|0399.14007}
Linking options:
  • https://www.mathnet.ru/eng/im2069
  • https://doi.org/10.1070/IM1977v011n06ABEH001765
  • https://www.mathnet.ru/eng/im/v41/i6/p1231
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:260
    Russian version PDF:113
    English version PDF:15
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024