Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 613–653
DOI: https://doi.org/10.1070/IM8754
(Mi im8754)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci

S. G. Tankeev

Vladimir State University
References:
Abstract: We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operator ${}^{\mathrm{c}}\Lambda$ of Hodge theory is true for the fibre product $X=X_1\times_CX_2\times_CX_3$ of complex elliptic surfaces $X_k\to C$ over a smooth projective curve $C$ provided that the discriminant loci $\{\delta\in C\mid \operatorname{Sing}(X_{k\delta})\neq \varnothing\}$ $(k=1,2,3)$ are pairwise disjoint.
Keywords: standard conjecture, elliptic surface, fibre product, resolution of indeterminacies, Clemens–Schmid sequence, Gysin map.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00143
This paper was written with the financial support of the Russian Foundation for Basic Research (grant no. 18-01-00143).
Received: 24.12.2017
Revised: 28.06.2018
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. Math., 83:3 (2019), 613–653
Citation in format AMSBIB
\Bibitem{Tan19}
\by S.~G.~Tankeev
\paper On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 613--653
\mathnet{http://mi.mathnet.ru//eng/im8754}
\crossref{https://doi.org/10.1070/IM8754}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954311}
\zmath{https://zbmath.org/?q=an:1420.14016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..613T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800008}
\elib{https://elibrary.ru/item.asp?id=37652148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086819994}
Linking options:
  • https://www.mathnet.ru/eng/im8754
  • https://doi.org/10.1070/IM8754
  • https://www.mathnet.ru/eng/im/v83/i3/p213
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024