Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 2, Pages 357–388
DOI: https://doi.org/10.1070/im2001v065n02ABEH000330
(Mi im330)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the Brauer group of an arithmetic scheme

S. G. Tankeev

Vladimir State University
References:
Abstract: For an Enriques surface $V$ over a number field $k$ with a $k$-rational point we prove that the $l$-component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is finite if and only if $l\ne 2$. For a regular projective smooth variety satisfying the Tate conjecture for divisors over a number field, we find a simple criterion for the finiteness of the $l$-component of $\operatorname{Br}'(V)/{\operatorname{Br}(k)}$. Moreover, for an arithmetic model $X$ of $V$ we prove a variant of Artin's conjecture on the finiteness of the Brauer group of $X$. Applications to the finiteness of the $l$-components of Shafarevich–Tate groups are given.
Received: 01.02.2000
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2001, Volume 65, Issue 2, Pages 155–186
DOI: https://doi.org/10.4213/im330
Bibliographic databases:
MSC: 14F22
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On the Brauer group of an arithmetic scheme”, Izv. RAN. Ser. Mat., 65:2 (2001), 155–186; Izv. Math., 65:2 (2001), 357–388
Citation in format AMSBIB
\Bibitem{Tan01}
\by S.~G.~Tankeev
\paper On the Brauer group of an arithmetic scheme
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 2
\pages 155--186
\mathnet{http://mi.mathnet.ru/im330}
\crossref{https://doi.org/10.4213/im330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1842843}
\zmath{https://zbmath.org/?q=an:1004.14004}
\elib{https://elibrary.ru/item.asp?id=14229896}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 2
\pages 357--388
\crossref{https://doi.org/10.1070/im2001v065n02ABEH000330}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645393994}
Linking options:
  • https://www.mathnet.ru/eng/im330
  • https://doi.org/10.1070/im2001v065n02ABEH000330
  • https://www.mathnet.ru/eng/im/v65/i2/p155
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:492
    Russian version PDF:192
    English version PDF:25
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024