Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 2, Pages 393–424
DOI: https://doi.org/10.1070/IM2002v066n02ABEH000383
(Mi im383)
 

This article is cited in 5 scientific papers (total in 5 papers)

The arithmetic and geometry of a generic hypersurface section

S. G. Tankeev

Vladimir State University
References:
Abstract: If the Hodge conjecture (respectively the Tate conjecture or the Mumford–Tate conjecture) holds for a smooth projective variety $X$ over a field $k$ of characteristic zero, then it holds for a generic member $X_t$ of a $k$-rational Lefschetz pencil of hypersurface sections of $X$ of sufficiently high degree. The Mumford–Tate conjecture is true for the Hodge $\mathbb{Q}$-structure associated with vanishing cycles on $X_t$. If the transcendental part of the second cohomology of a K3 surface $S$ over a number field is an absolutely irreducible module under the action of the Hodge group $\operatorname{Hg}(S)$, then the punctual Hilbert scheme $\operatorname{Hilb}^2(S)$ is a hyperkähler fourfold satisfying the conjectures of Hodge, Tate and Mumford–Tate.
Received: 31.10.2000
Bibliographic databases:
UDC: 512.6
MSC: 14K15
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “The arithmetic and geometry of a generic hypersurface section”, Izv. Math., 66:2 (2002), 393–424
Citation in format AMSBIB
\Bibitem{Tan02}
\by S.~G.~Tankeev
\paper The arithmetic and geometry of a~generic hypersurface section
\jour Izv. Math.
\yr 2002
\vol 66
\issue 2
\pages 393--424
\mathnet{http://mi.mathnet.ru//eng/im383}
\crossref{https://doi.org/10.1070/IM2002v066n02ABEH000383}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918848}
\zmath{https://zbmath.org/?q=an:1053.14012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748499847}
Linking options:
  • https://www.mathnet.ru/eng/im383
  • https://doi.org/10.1070/IM2002v066n02ABEH000383
  • https://www.mathnet.ru/eng/im/v66/i2/p173
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024