Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 1, Pages 169–200
DOI: https://doi.org/10.1070/IM2014v078n01ABEH002684
(Mi im8041)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Néron minimal models

S. G. Tankeev

Vladimir State University
References:
Abstract: We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of operators $*$ and $\Lambda$ of Hodge theory holds for every smooth complex projective model $X$ of the fibre product $X_1\times_CX_2$, where $X_1\to C$ is an elliptic surface over a smooth projective curve $C$ and $X_2\to C$ is a family of K3 surfaces with semistable degenerations of rational type such that $\operatorname{rank}\operatorname{NS}(X_{2s})\ne18$ for a generic geometric fibre $X_{2s}$. We also show that $B(X)$ holds for any smooth projective compactification $X$ of the Néron minimal model of an Abelian scheme of relative dimension $3$ over an affine curve provided that the generic scheme fibre is an absolutely simple Abelian variety with reductions of multiplicative type at all infinite places.
Keywords: elliptic variety, standard conjecture of Lefschetz type, K3 surface, semistable degeneration of rational type, algebraic cycle, Néron minimal model, reduction of multiplicative type.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00097
Received: 07.08.2012
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 1, Pages 181–214
DOI: https://doi.org/10.4213/im8041
Bibliographic databases:
Document Type: Article
UDC: 512.6
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Néron minimal models”, Izv. RAN. Ser. Mat., 78:1 (2014), 181–214; Izv. Math., 78:1 (2014), 169–200
Citation in format AMSBIB
\Bibitem{Tan14}
\by S.~G.~Tankeev
\paper On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of N\'eron minimal models
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 1
\pages 181--214
\mathnet{http://mi.mathnet.ru/im8041}
\crossref{https://doi.org/10.4213/im8041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204663}
\zmath{https://zbmath.org/?q=an:1290.14007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..169T}
\elib{https://elibrary.ru/item.asp?id=21276264}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 169--200
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002684}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500008}
\elib{https://elibrary.ru/item.asp?id=21866896}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894838659}
Linking options:
  • https://www.mathnet.ru/eng/im8041
  • https://doi.org/10.1070/IM2014v078n01ABEH002684
  • https://www.mathnet.ru/eng/im/v78/i1/p181
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:554
    Russian version PDF:191
    English version PDF:10
    References:53
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024