Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 1, Pages 177–207
DOI: https://doi.org/10.1070/IM2015v079n01ABEH002738
(Mi im8227)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties

S. G. Tankeev

Vladimir State University
References:
Abstract: We prove the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $*$ and $\Lambda$ of Hodge theory for a smooth complex projective variety $X$ if at least one of the following conditions holds: $X$ is a compactification of the Néron minimal model of an Abelian scheme of relative dimension $3$ over an affine curve, and the generic scheme fibre of the Abelian scheme has reductions of multiplicative type at all infinite places; $X$ is an irreducible holomorphic symplectic (hyperkähler) 4-dimensional variety that coincides with the Altman–Kleiman compactification of the relative Jacobian variety of a family $\mathcal C\to\mathbb P^2$ of hyperelliptic curves of genus 2 with weak degenerations, and the canonical projection $X\to\mathbb P^2$ is a Lagrangian fibration. We also show that a Chow–Lefschetz decomposition exists for every smooth projective 3-dimensional variety $X$ which has the structure of a 1-parameter non-isotrivial family of K3-surfaces (with degenerations) or a family of regular surfaces of arbitrary Kodaira dimension $\varkappa$ with strong degenerations.
Keywords: standard conjecture of Lefschetz type, Néron minimal model, reduction of multiplicative type, K3-surface, hyperkähler variety, Chow–Lefschetz decomposition, Abel–Jacobi map.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00097
This paper was written with the financial support of RFBR (grant no. 12-01-00097).
Received: 28.02.2014
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207
Citation in format AMSBIB
\Bibitem{Tan15}
\by S.~G.~Tankeev
\paper On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 177--207
\mathnet{http://mi.mathnet.ru//eng/im8227}
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002738}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352586}
\zmath{https://zbmath.org/?q=an:06428109}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..177T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350754500008}
\elib{https://elibrary.ru/item.asp?id=23421418}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924340281}
Linking options:
  • https://www.mathnet.ru/eng/im8227
  • https://doi.org/10.1070/IM2015v079n01ABEH002738
  • https://www.mathnet.ru/eng/im/v79/i1/p185
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024