Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 44, Issue 3, Pages 531–553
DOI: https://doi.org/10.1070/IM1995v044n03ABEH001611
(Mi im790)
 

This article is cited in 3 scientific papers (total in 3 papers)

Algebraic cycles on an abelian variety without complex multiplication

S. G. Tankeev

Vladimir State University
References:
Abstract: We prove a theorem to the effect that if a natural number $d$ is not exceptional, then all $d$-dimensional abelian varieties without complex multiplication satisfy the Grothendieck version of the general Hodge conjecture. Exceptional numbers have density zero in the set of natural numbers. If $\operatorname{End}(J)=\mathbf Z$, $J$ is defined over a number field, and $\dim J=2p$, where $p$ is a prime number, $p\ne 2$ and $p\ne 5$, then the Mumford–Tate conjecture and the Tate conjecture on algebraic cycles hold for the variety $J$.
Received: 25.04.1993
Bibliographic databases:
UDC: 512.6
MSC: 14C30, 14K22, 32J25
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “Algebraic cycles on an abelian variety without complex multiplication”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 531–553
Citation in format AMSBIB
\Bibitem{Tan94}
\by S.~G.~Tankeev
\paper Algebraic cycles on an abelian variety without complex multiplication
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 3
\pages 531--553
\mathnet{http://mi.mathnet.ru//eng/im790}
\crossref{https://doi.org/10.1070/IM1995v044n03ABEH001611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1286841}
\zmath{https://zbmath.org/?q=an:0851.14005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..531T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RQ68000005}
Linking options:
  • https://www.mathnet.ru/eng/im790
  • https://doi.org/10.1070/IM1995v044n03ABEH001611
  • https://www.mathnet.ru/eng/im/v58/i3/p103
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024