Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 4, Pages 787–806
DOI: https://doi.org/10.1070/im2000v064n04ABEH000298
(Mi im298)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Brauer group

S. G. Tankeev

Vladimir State University
References:
Abstract: For an arithmetic model $X$ of a Fermat surface or a hyperkahler variety with Betti number $\operatorname{b}_2(V\otimes\bar k)>3$ over a purely imaginary number field $k$, we prove the finiteness of the $l$-components of $\operatorname{Br}'(X)$ for all primes $l\gg 0$. This yields a variant of a conjecture of M. Artin.
If $V$ is a smooth projective irregular surface over a number field $k$ and $V(k)\ne\varnothing$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is an infinite group for every prime $l$. Let $A^1\to M^1$ be the universal family of elliptic curves with a Jacobian structure of level $N\geqslant 3$ over a number field $k\supset\mathbb Q(e^{2\pi i/N})$. Assume that $M^1(k)\ne\varnothing$. If $V$ is a smooth projective compactification of the surface $A^1$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(\overline M^1)}$ is a finite group for each sufficiently large prime $l$.
Received: 22.12.1998
Bibliographic databases:
MSC: 14J20
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On the Brauer group”, Izv. Math., 64:4 (2000), 787–806
Citation in format AMSBIB
\Bibitem{Tan00}
\by S.~G.~Tankeev
\paper On the Brauer group
\jour Izv. Math.
\yr 2000
\vol 64
\issue 4
\pages 787--806
\mathnet{http://mi.mathnet.ru//eng/im298}
\crossref{https://doi.org/10.1070/im2000v064n04ABEH000298}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794598}
\zmath{https://zbmath.org/?q=an:0983.14006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165984800005}
\elib{https://elibrary.ru/item.asp?id=13351720}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645403281}
Linking options:
  • https://www.mathnet.ru/eng/im298
  • https://doi.org/10.1070/im2000v064n04ABEH000298
  • https://www.mathnet.ru/eng/im/v64/i4/p141
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024