|
This article is cited in 8 scientific papers (total in 8 papers)
K3 surfaces over number fields and the Mumford–Tate conjecture
S. G. Tankeev Vladimir Polytechnical Institute
Abstract:
Given a K3 surface $S$ over a number field $k$, the author computes the semisimple part of the Lie algebra of the image of the $l$-adic representation in 2-dimensional cohomology of $S$ under the condition that $\operatorname{rank}NS(S\otimes_k\bar k)\ne2$.
Received: 29.11.1988
Citation:
S. G. Tankeev, “K3 surfaces over number fields and the Mumford–Tate conjecture”, Math. USSR-Izv., 37:1 (1991), 191–208
Linking options:
https://www.mathnet.ru/eng/im1077https://doi.org/10.1070/IM1991v037n01ABEH002059 https://www.mathnet.ru/eng/im/v54/i4/p846
|
|