Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 1, Pages 136–149
DOI: https://doi.org/10.4213/mzm9240
(Mi mzm9240)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Finiteness of the Brauer Group of an Arithmetic Scheme

S. G. Tankeev

Vladimir State University
Full-text PDF (562 kB) Citations (4)
References:
Abstract: The Artin conjecture on the finiteness of the Brauer group is shown to hold for an arithmetic model of a K3 surface over a number field $k$. The Brauer group of an arithmetic model of an Enriques surface over a sufficiently large number field is shown to be a $2$-group. For almost all prime numbers $l$, the triviality of the $l$-primary component of the Brauer group of an arithmetic model of a smooth projective simply connected Calabi–Yau variety $V$ over a number field $k$ under the assumption that $V(k)\neq\varnothing$ is proved.
Keywords: Brauer group, arithmetic model, K3 surface, Enriques surface, Calabi–Yau variety, Artin conjecture.
Received: 12.08.2011
Revised: 28.02.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 1, Pages 122–133
DOI: https://doi.org/10.1134/S0001434614010131
Bibliographic databases:
Document Type: Article
UDC: 512.71
Language: Russian
Citation: S. G. Tankeev, “On the Finiteness of the Brauer Group of an Arithmetic Scheme”, Mat. Zametki, 95:1 (2014), 136–149; Math. Notes, 95:1 (2014), 122–133
Citation in format AMSBIB
\Bibitem{Tan14}
\by S.~G.~Tankeev
\paper On the Finiteness of the Brauer Group of an Arithmetic Scheme
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 1
\pages 136--149
\mathnet{http://mi.mathnet.ru/mzm9240}
\crossref{https://doi.org/10.4213/mzm9240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267201}
\elib{https://elibrary.ru/item.asp?id=21276966}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 1
\pages 122--133
\crossref{https://doi.org/10.1134/S0001434614010131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457200013}
\elib{https://elibrary.ru/item.asp?id=21866831}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894760647}
Linking options:
  • https://www.mathnet.ru/eng/mzm9240
  • https://doi.org/10.4213/mzm9240
  • https://www.mathnet.ru/eng/mzm/v95/i1/p136
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :165
    References:84
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024