|
This article is cited in 14 scientific papers (total in 14 papers)
On the standard conjecture for complex Abelian schemes over smooth projective curves
S. G. Tankeev Vladimir State University
Abstract:
We reduce the Hodge conjecture for Abelian varieties to the question of the existence of an algebraic isomorphism $H^2(C,R^{2d-i}\pi_\ast\mathbb Q)\widetilde\rightarrow,
H^0(C,R^i\pi_\ast\mathbb Q)$ for all $i\geqslant 2$ and all principally polarized complex Abelian schemes $\pi\colon X\to C$ of relative dimension $d$ over smooth projective curves. If the canonically defined Hodge cycles $\alpha_i(X/C)\in H^0(C,R^i\pi_\ast\mathbb Q)\otimes H^0(C,R^i\pi_\ast\mathbb Q)$ are algebraic for all integers $i\geqslant 2$, then the Grothendieck standard conjecture $B(X)$ on the algebraicity of the operators $\Lambda$ and $\ast$ holds for $X$. We prove $B(X)$ for an Abelian scheme under the assumption that $\operatorname{End}(X_s)=\mathbb Z$ for some geometric fibre $X_s$ of non-exceptional dimension.
Received: 12.07.2001
Citation:
S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. RAN. Ser. Mat., 67:3 (2003), 183–224; Izv. Math., 67:3 (2003), 597–635
Linking options:
https://www.mathnet.ru/eng/im439https://doi.org/10.1070/IM2003v067n03ABEH000439 https://www.mathnet.ru/eng/im/v67/i3/p183
|
Statistics & downloads: |
Abstract page: | 563 | Russian version PDF: | 288 | English version PDF: | 22 | References: | 63 | First page: | 1 |
|