|
This article is cited in 7 scientific papers (total in 7 papers)
On the Brauer group of an arithmetic scheme. II
S. G. Tankeev Vladimir State University
Abstract:
Let $\pi\colon X\to\operatorname{Spec}A$ be an arithmetic model of a regular smooth projective variety $V$ over a number field $k$. We prove the finiteness of
$H^1(\operatorname{Spec} A,R^1\pi_\ast\operatorname{G}_m)$ under the assumption that
$\pi_\ast\operatorname{G}_m=\operatorname{G}_m$ for the étale topology. (This assumption holds automatically if all geometric fibres of $\pi$ are reduced and connected.) If a prime $l$ does not divide $\operatorname{Card}([\operatorname{NS}(V\otimes
\bar k)]_{\mathrm{tors}})$, $V(k)\ne\varnothing$, and the Tate conjecture holds for divisors on $V$, then the $l$-primary component $\operatorname{Br}'(X)(l)$ is finite. We also study finiteness properties of the Brauer group of a Calabi–Yau variety $V$ of dimension
$\geqslant 2$ over a number field.
Received: 24.04.2002
Citation:
S. G. Tankeev, “On the Brauer group of an arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029
Linking options:
https://www.mathnet.ru/eng/im455https://doi.org/10.1070/IM2003v067n05ABEH000455 https://www.mathnet.ru/eng/im/v67/i5/p155
|
Statistics & downloads: |
Abstract page: | 450 | Russian version PDF: | 200 | English version PDF: | 29 | References: | 57 | First page: | 1 |
|