Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 5, Pages 1007–1029
DOI: https://doi.org/10.1070/IM2003v067n05ABEH000455
(Mi im455)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the Brauer group of an arithmetic scheme. II

S. G. Tankeev

Vladimir State University
References:
Abstract: Let $\pi\colon X\to\operatorname{Spec}A$ be an arithmetic model of a regular smooth projective variety $V$ over a number field $k$. We prove the finiteness of $H^1(\operatorname{Spec} A,R^1\pi_\ast\operatorname{G}_m)$ under the assumption that $\pi_\ast\operatorname{G}_m=\operatorname{G}_m$ for the étale topology. (This assumption holds automatically if all geometric fibres of $\pi$ are reduced and connected.) If a prime $l$ does not divide $\operatorname{Card}([\operatorname{NS}(V\otimes \bar k)]_{\mathrm{tors}})$, $V(k)\ne\varnothing$, and the Tate conjecture holds for divisors on $V$, then the $l$-primary component $\operatorname{Br}'(X)(l)$ is finite. We also study finiteness properties of the Brauer group of a Calabi–Yau variety $V$ of dimension $\geqslant 2$ over a number field.
Received: 24.04.2002
Bibliographic databases:
UDC: 512.6
MSC: 14F22
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On the Brauer group of an arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029
Citation in format AMSBIB
\Bibitem{Tan03}
\by S.~G.~Tankeev
\paper On the Brauer group of an arithmetic scheme.~II
\jour Izv. Math.
\yr 2003
\vol 67
\issue 5
\pages 1007--1029
\mathnet{http://mi.mathnet.ru//eng/im455}
\crossref{https://doi.org/10.1070/IM2003v067n05ABEH000455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2018744}
\zmath{https://zbmath.org/?q=an:1078.14023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187798600007}
\elib{https://elibrary.ru/item.asp?id=14229897}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645399836}
Linking options:
  • https://www.mathnet.ru/eng/im455
  • https://doi.org/10.1070/IM2003v067n05ABEH000455
  • https://www.mathnet.ru/eng/im/v67/i5/p155
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:450
    Russian version PDF:200
    English version PDF:29
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024