Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 1, Pages 181–218
DOI: https://doi.org/10.1070/im1999v063n01ABEH000233
(Mi im233)
 

This article is cited in 6 scientific papers (total in 6 papers)

On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues

S. G. Tankeev

Vladimir State University
References:
Abstract: Let $J$ be an absolutely simple Abelian variety over a number field $k$, $[k:\mathbb Q]<\infty$. Assume that $\operatorname{Cent}(\operatorname{End}(J\otimes\overline k))=\mathbb Z$. If the division $\mathbb Q$-algebra $\operatorname{End}^0(J\otimes\overline k)$ splits at a prime number $l$, then the $l$-adic representation is defined by the miniscule weights (microweights) of simple classical Lie algebras of types $A_m$, $B_m$$C_m$ or $D_m$.
If $S$ is a K3 surface over a sufficiently large number field $k\subset\mathbb C$ and the Hodge group $\operatorname{Hg}(S\otimes_k\mathbb C)$ is semisimple, then $S$ has ordinary reduction at each non-Archimedean place of $k$ in some set of Dirichlet density 1.
If $J$ is an absolutely simple Abelian threefold of type IV in Albert's classification over a sufficiently large number field, then $J$ has ordinary reduction at each place in some set of Dirichlet density 1.
Received: 20.07.1997
Bibliographic databases:
MSC: 14K15
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues”, Izv. Math., 63:1 (1999), 181–218
Citation in format AMSBIB
\Bibitem{Tan99}
\by S.~G.~Tankeev
\paper On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
\jour Izv. Math.
\yr 1999
\vol 63
\issue 1
\pages 181--218
\mathnet{http://mi.mathnet.ru//eng/im233}
\crossref{https://doi.org/10.1070/im1999v063n01ABEH000233}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701843}
\zmath{https://zbmath.org/?q=an:0955.14034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081487100008}
\elib{https://elibrary.ru/item.asp?id=13330359}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746975882}
Linking options:
  • https://www.mathnet.ru/eng/im233
  • https://doi.org/10.1070/im1999v063n01ABEH000233
  • https://www.mathnet.ru/eng/im/v63/i1/p185
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:528
    Russian version PDF:223
    English version PDF:26
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024