Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 2, Pages 391–424
DOI: https://doi.org/10.1070/IM1996v060n02ABEH000075
(Mi im75)
 

This article is cited in 11 scientific papers (total in 11 papers)

Cycles on Abelian varieties and exceptional numbers

S. G. Tankeev

Vladimir Technical University
References:
Abstract: The article considers a technique for proving the Hodge, Tate, and Mumford–Tate conjectures for a simple complex Abelian variety $J$ of non-exceptional dimension under the condition that $\operatorname{End}(J)\otimes \mathbb R\in\bigl\{\mathbb R,M_2(\mathbb R), \mathbb K,\mathbb C\bigr\}$, where $\mathbb K$ is the skew field of classical quaternions. The simple $2p$-dimensional Abelian varieties over a number field ($p$ is a prime, $p\geqslant 17$) are studied in detail. An application is given of Minkowski's theorem on unramified extensions of the field $\mathbb Q$ to the arithmetic and geometry of certain Abelian varieties over the field of rational numbers.
Received: 25.04.1995
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1996, Volume 60, Issue 2, Pages 159–194
DOI: https://doi.org/10.4213/im75
Bibliographic databases:
UDC: 512.6
MSC: Primary 14K15, 14C30; Secondary 17B10
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “Cycles on Abelian varieties and exceptional numbers”, Izv. Math., 60:2 (1996), 391–424
Citation in format AMSBIB
\Bibitem{Tan96}
\by S.~G.~Tankeev
\paper Cycles on Abelian varieties and exceptional numbers
\jour Izv. Math.
\yr 1996
\vol 60
\issue 2
\pages 391--424
\mathnet{http://mi.mathnet.ru//eng/im75}
\crossref{https://doi.org/10.1070/IM1996v060n02ABEH000075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1399422}
\zmath{https://zbmath.org/?q=an:0899.14021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VL85500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645637870}
Linking options:
  • https://www.mathnet.ru/eng/im75
  • https://doi.org/10.1070/IM1996v060n02ABEH000075
  • https://www.mathnet.ru/eng/im/v60/i2/p159
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:454
    Russian version PDF:190
    English version PDF:27
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024