Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Ivanova, Anna Olegovna

Statistics Math-Net.Ru
Total publications: 50
Scientific articles: 50

Number of views:
This page:1434
Abstract pages:15354
Full texts:3376
References:2250
E-mail:

https://www.mathnet.ru/eng/person27791
List of publications on Google Scholar
https://zbmath.org/authors/ai:ivanova.anna-o
https://mathscinet.ams.org/mathscinet/MRAuthorID/757733
https://orcid.org/0000-0002-6179-3740

Publications in Math-Net.Ru Citations
2024
1. O. V. Borodin, A. O. Ivanova, “Light $3$-paths in $3$-polytopes without adjacent triangles”, Sibirsk. Mat. Zh., 65:2 (2024),  249–257  mathnet
2022
2. O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulations on surfaces”, Sibirsk. Mat. Zh., 63:4 (2022),  796–804  mathnet; Siberian Math. J., 63:4 (2022), 662–669 1
2021
3. O. V. Borodin, A. O. Ivanova, “Tight description of faces in torus triangulations with minimum degree 5”, Sib. Èlektron. Mat. Izv., 18:2 (2021),  1475–1481  mathnet  isi
4. Ts. Ch.-D. Batueva, O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices”, Sib. Èlektron. Mat. Izv., 18:1 (2021),  456–463  mathnet  isi
5. O. V. Borodin, A. O. Ivanova, “A tight description of $3$-polytopes by their major $3$-paths”, Sibirsk. Mat. Zh., 62:3 (2021),  498–508  mathnet  elib; Siberian Math. J., 62:3 (2021), 400–408  isi  scopus
6. O. V. Borodin, A. O. Ivanova, “Heights of minor faces in 3-polytopes”, Sibirsk. Mat. Zh., 62:2 (2021),  250–268  mathnet  elib; Siberian Math. J., 62:2 (2021), 199–214  isi  scopus
2020
7. O. V. Borodin, A. O. Ivanova, “Soft 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 17 (2020),  1863–1868  mathnet
8. O. V. Borodin, A. O. Ivanova, “An extension of Franklin's Theorem”, Sib. Èlektron. Mat. Izv., 17 (2020),  1516–1521  mathnet  isi 3
9. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $8$”, Sib. Èlektron. Mat. Izv., 17 (2020),  496–501  mathnet  isi
2019
10. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Sib. Èlektron. Mat. Izv., 16 (2019),  1334–1344  mathnet  isi 5
11. O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Sibirsk. Mat. Zh., 60:3 (2019),  527–536  mathnet  elib; Siberian Math. J., 60:3 (2019), 405–411  isi  scopus
12. O. V. Borodin, A. O. Ivanova, “Light minor $5$-stars in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 60:2 (2019),  351–359  mathnet  elib; Siberian Math. J., 60:2 (2019), 272–278  isi  scopus
2018
13. O. V. Borodin, A. O. Ivanova, “Light 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 15 (2018),  1344–1352  mathnet  isi 1
14. V. A. Aksenov, O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $9$”, Sib. Èlektron. Mat. Izv., 15 (2018),  1174–1181  mathnet  isi 2
15. O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 59:1 (2018),  56–64  mathnet  elib; Siberian Math. J., 59:1 (2018), 43–49  isi  scopus 3
2017
16. O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices”, Sibirsk. Mat. Zh., 58:4 (2017),  771–778  mathnet  elib; Siberian Math. J., 58:4 (2017), 600–605  isi  elib  scopus 7
17. O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017),  48–55  mathnet  elib; Siberian Math. J., 58:1 (2017), 37–42  isi  elib  scopus 4
2016
18. O. V. Borodin, A. O. Ivanova, “Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$”, Sib. Èlektron. Mat. Izv., 13 (2016),  584–591  mathnet  isi 7
19. O. V. Borodin, A. O. Ivanova, “Describing $4$-paths in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 57:5 (2016),  981–987  mathnet  elib; Siberian Math. J., 57:5 (2016), 764–768  isi  elib  scopus 6
20. O. V. Borodin, A. O. Ivanova, “Light and low $5$-stars in normal plane maps with minimum degree $5$”, Sibirsk. Mat. Zh., 57:3 (2016),  596–602  mathnet  mathscinet  elib; Siberian Math. J., 57:3 (2016), 470–475  isi  elib  scopus 14
21. A. O. Ivanova, “Description of faces in 3-polytopes without vertices of degree from 4 to 9”, Mathematical notes of NEFU, 23:3 (2016),  46–54  mathnet  elib
22. A. O. Ivanova, “Tight description of 4-paths in 3-polytopes with minimum degree 5”, Mathematical notes of NEFU, 23:1 (2016),  46–55  mathnet  elib
2015
23. O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free $3$-polytopes”, Sibirsk. Mat. Zh., 56:5 (2015),  982–987  mathnet  mathscinet  elib; Siberian Math. J., 56:5 (2015), 783–788  isi  elib  scopus 8
24. O. V. Borodin, A. O. Ivanova, “Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$”, Sibirsk. Mat. Zh., 56:4 (2015),  775–789  mathnet  mathscinet  elib; Siberian Math. J., 56:4 (2015), 612–623  isi  elib  scopus 5
25. O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in $3$-polytopes”, Sibirsk. Mat. Zh., 56:2 (2015),  338–350  mathnet  mathscinet  elib; Siberian Math. J., 56:2 (2015), 275–284  isi  elib  scopus 12
2014
26. O. V. Borodin, A. O. Ivanova, “The weight of edge in 3-polytopes”, Sib. Èlektron. Mat. Izv., 11 (2014),  457–463  mathnet 3
27. O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$”, Sibirsk. Mat. Zh., 55:1 (2014),  17–24  mathnet  mathscinet; Siberian Math. J., 55:1 (2014), 12–18  isi  scopus 4
2011
28. O. V. Borodin, A. O. Ivanova, “2-distance 4-coloring of planar subcubic graphs”, Diskretn. Anal. Issled. Oper., 18:2 (2011),  18–28  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:4 (2011), 535–541  scopus 5
29. O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Sibirsk. Mat. Zh., 52:3 (2011),  522–541  mathnet  mathscinet; Siberian Math. J., 52:3 (2011), 411–425  isi  scopus 15
30. O. V. Borodin, A. O. Ivanova, “Injective $(\Delta+1)$-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011),  30–38  mathnet  mathscinet; Siberian Math. J., 52:1 (2011), 23–29  isi  scopus 17
2010
31. A. O. Ivanova, “List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least 7”, Diskretn. Anal. Issled. Oper., 17:5 (2010),  22–36  mathnet  mathscinet  zmath 13
32. O. V. Borodin, A. O. Ivanova, “Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$”, Sib. Èlektron. Mat. Izv., 7 (2010),  275–283  mathnet 8
2009
33. O. V. Borodin, A. O. Ivanova, “Near-proper vertex 2-colorings of sparse graphs”, Diskretn. Anal. Issled. Oper., 16:2 (2009),  16–20  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:1 (2010), 21–23  scopus 18
34. O. V. Borodin, A. O. Ivanova, “Partitioning sparse plane graphs into two induced subgraphs of small degree”, Sib. Èlektron. Mat. Izv., 6 (2009),  13–16  mathnet  mathscinet 2
35. O. V. Borodin, A. O. Ivanova, “List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$”, Sibirsk. Mat. Zh., 50:6 (2009),  1216–1224  mathnet  mathscinet; Siberian Math. J., 50:6 (2009), 958–964  isi  scopus 13
2008
36. O. V. Borodin, I. G. Dmitriev, A. O. Ivanova, “Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников”, Diskretn. Anal. Issled. Oper., 15:1 (2008),  11–16  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 3:1 (2009), 28–31  scopus 10
37. O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “Circular $(5,2)$-coloring of sparse graphs”, Sib. Èlektron. Mat. Izv., 5 (2008),  417–426  mathnet  mathscinet 12
38. O. V. Borodin, A. O. Ivanova, “List $2$-arboricity of planar graphs with no triangles at distance less than two”, Sib. Èlektron. Mat. Izv., 5 (2008),  211–214  mathnet  mathscinet 2
39. O. V. Borodin, A. O. Ivanova, “Planar graphs without triangular $4$-cycles are $3$-choosable”, Sib. Èlektron. Mat. Izv., 5 (2008),  75–79  mathnet  mathscinet 9
2007
40. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  13–30  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 2:3 (2008), 317–328  scopus 22
41. O. V. Borodin, A. O. Ivanova, A. V. Kostochka, N. N. Sheikh, “Minimax degrees of quasiplane graphs without $4$-faces”, Sib. Èlektron. Mat. Izv., 4 (2007),  435–439  mathnet  mathscinet  zmath 2
42. O. V. Borodin, A. O. Ivanova, B. S. Stechkin, “Decomposing a planar graph into a forest and a subgraph of restricted maximum degree”, Sib. Èlektron. Mat. Izv., 4 (2007),  296–299  mathnet  mathscinet  zmath 3
2006
43. O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Oriented 5-coloring of sparse plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 1:1 (2007), 9–17  scopus 25
44. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$”, Sib. Èlektron. Mat. Izv., 3 (2006),  441–450  mathnet  zmath 13
45. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “List $(p,q)$-coloring of sparse plane graphs”, Sib. Èlektron. Mat. Izv., 3 (2006),  355–361  mathnet  mathscinet  zmath 5
2005
46. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  32–47  mathnet  mathscinet  zmath 12
47. O. V. Borodin, A. O. Ivanova, “An oriented colouring of planar graphs with girth at least $4$”, Sib. Èlektron. Mat. Izv., 2 (2005),  239–249  mathnet  mathscinet  zmath 5
48. O. V. Borodin, A. O. Ivanova, “An oriented $7$-colouring of planar graphs with girth at least $7$”, Sib. Èlektron. Mat. Izv., 2 (2005),  222–229  mathnet  mathscinet  zmath 10
2004
49. O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable”, Sib. Èlektron. Mat. Izv., 1 (2004),  129–141  mathnet  mathscinet  zmath 34
50. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “$2$-distance coloring of sparse planar graphs”, Sib. Èlektron. Mat. Izv., 1 (2004),  76–90  mathnet  mathscinet  zmath 21

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024