|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
O. V. Borodin, A. O. Ivanova, “Light $3$-paths in $3$-polytopes without adjacent triangles”, Sibirsk. Mat. Zh., 65:2 (2024), 249–257 |
|
2022 |
2. |
O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulations on surfaces”, Sibirsk. Mat. Zh., 63:4 (2022), 796–804 ; Siberian Math. J., 63:4 (2022), 662–669 |
1
|
|
2021 |
3. |
O. V. Borodin, A. O. Ivanova, “Tight description of faces in torus triangulations with minimum degree 5”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1475–1481 |
4. |
Ts. Ch.-D. Batueva, O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 456–463 |
5. |
O. V. Borodin, A. O. Ivanova, “A tight description of $3$-polytopes by their major $3$-paths”, Sibirsk. Mat. Zh., 62:3 (2021), 498–508 ; Siberian Math. J., 62:3 (2021), 400–408 |
6. |
O. V. Borodin, A. O. Ivanova, “Heights of minor faces in 3-polytopes”, Sibirsk. Mat. Zh., 62:2 (2021), 250–268 ; Siberian Math. J., 62:2 (2021), 199–214 |
|
2020 |
7. |
O. V. Borodin, A. O. Ivanova, “Soft 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 17 (2020), 1863–1868 |
8. |
O. V. Borodin, A. O. Ivanova, “An extension of Franklin's Theorem”, Sib. Èlektron. Mat. Izv., 17 (2020), 1516–1521 |
3
|
9. |
O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $8$”, Sib. Èlektron. Mat. Izv., 17 (2020), 496–501 |
|
2019 |
10. |
O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1334–1344 |
5
|
11. |
O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Sibirsk. Mat. Zh., 60:3 (2019), 527–536 ; Siberian Math. J., 60:3 (2019), 405–411 |
12. |
O. V. Borodin, A. O. Ivanova, “Light minor $5$-stars in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 60:2 (2019), 351–359 ; Siberian Math. J., 60:2 (2019), 272–278 |
|
2018 |
13. |
O. V. Borodin, A. O. Ivanova, “Light 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 15 (2018), 1344–1352 |
1
|
14. |
V. A. Aksenov, O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $9$”, Sib. Èlektron. Mat. Izv., 15 (2018), 1174–1181 |
2
|
15. |
O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 59:1 (2018), 56–64 ; Siberian Math. J., 59:1 (2018), 43–49 |
3
|
|
2017 |
16. |
O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices”, Sibirsk. Mat. Zh., 58:4 (2017), 771–778 ; Siberian Math. J., 58:4 (2017), 600–605 |
7
|
17. |
O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017), 48–55 ; Siberian Math. J., 58:1 (2017), 37–42 |
4
|
|
2016 |
18. |
O. V. Borodin, A. O. Ivanova, “Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$”, Sib. Èlektron. Mat. Izv., 13 (2016), 584–591 |
7
|
19. |
O. V. Borodin, A. O. Ivanova, “Describing $4$-paths in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 57:5 (2016), 981–987 ; Siberian Math. J., 57:5 (2016), 764–768 |
6
|
20. |
O. V. Borodin, A. O. Ivanova, “Light and low $5$-stars in normal plane maps with minimum degree $5$”, Sibirsk. Mat. Zh., 57:3 (2016), 596–602 ; Siberian Math. J., 57:3 (2016), 470–475 |
14
|
21. |
A. O. Ivanova, “Description of faces in 3-polytopes without vertices of degree from 4 to 9”, Mathematical notes of NEFU, 23:3 (2016), 46–54 |
22. |
A. O. Ivanova, “Tight description of 4-paths in 3-polytopes with minimum degree 5”, Mathematical notes of NEFU, 23:1 (2016), 46–55 |
|
2015 |
23. |
O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free $3$-polytopes”, Sibirsk. Mat. Zh., 56:5 (2015), 982–987 ; Siberian Math. J., 56:5 (2015), 783–788 |
8
|
24. |
O. V. Borodin, A. O. Ivanova, “Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$”, Sibirsk. Mat. Zh., 56:4 (2015), 775–789 ; Siberian Math. J., 56:4 (2015), 612–623 |
5
|
25. |
O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in $3$-polytopes”, Sibirsk. Mat. Zh., 56:2 (2015), 338–350 ; Siberian Math. J., 56:2 (2015), 275–284 |
12
|
|
2014 |
26. |
O. V. Borodin, A. O. Ivanova, “The weight of edge in 3-polytopes”, Sib. Èlektron. Mat. Izv., 11 (2014), 457–463 |
3
|
27. |
O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$”, Sibirsk. Mat. Zh., 55:1 (2014), 17–24 ; Siberian Math. J., 55:1 (2014), 12–18 |
4
|
|
2011 |
28. |
O. V. Borodin, A. O. Ivanova, “2-distance 4-coloring of planar subcubic graphs”, Diskretn. Anal. Issled. Oper., 18:2 (2011), 18–28 ; J. Appl. Industr. Math., 5:4 (2011), 535–541 |
5
|
29. |
O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Sibirsk. Mat. Zh., 52:3 (2011), 522–541 ; Siberian Math. J., 52:3 (2011), 411–425 |
15
|
30. |
O. V. Borodin, A. O. Ivanova, “Injective $(\Delta+1)$-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011), 30–38 ; Siberian Math. J., 52:1 (2011), 23–29 |
17
|
|
2010 |
31. |
A. O. Ivanova, “List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least 7”, Diskretn. Anal. Issled. Oper., 17:5 (2010), 22–36 |
13
|
32. |
O. V. Borodin, A. O. Ivanova, “Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$”, Sib. Èlektron. Mat. Izv., 7 (2010), 275–283 |
8
|
|
2009 |
33. |
O. V. Borodin, A. O. Ivanova, “Near-proper vertex 2-colorings of sparse graphs”, Diskretn. Anal. Issled. Oper., 16:2 (2009), 16–20 ; J. Appl. Industr. Math., 4:1 (2010), 21–23 |
18
|
34. |
O. V. Borodin, A. O. Ivanova, “Partitioning sparse plane graphs into two induced subgraphs of small degree”, Sib. Èlektron. Mat. Izv., 6 (2009), 13–16 |
2
|
35. |
O. V. Borodin, A. O. Ivanova, “List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$”, Sibirsk. Mat. Zh., 50:6 (2009), 1216–1224 ; Siberian Math. J., 50:6 (2009), 958–964 |
13
|
|
2008 |
36. |
O. V. Borodin, I. G. Dmitriev, A. O. Ivanova, “Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников”, Diskretn. Anal. Issled. Oper., 15:1 (2008), 11–16 ; J. Appl. Industr. Math., 3:1 (2009), 28–31 |
10
|
37. |
O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “Circular $(5,2)$-coloring of sparse graphs”, Sib. Èlektron. Mat. Izv., 5 (2008), 417–426 |
12
|
38. |
O. V. Borodin, A. O. Ivanova, “List $2$-arboricity of planar graphs with no triangles at distance less than two”, Sib. Èlektron. Mat. Izv., 5 (2008), 211–214 |
2
|
39. |
O. V. Borodin, A. O. Ivanova, “Planar graphs without triangular $4$-cycles are $3$-choosable”, Sib. Èlektron. Mat. Izv., 5 (2008), 75–79 |
9
|
|
2007 |
40. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007), 13–30 ; J. Appl. Industr. Math., 2:3 (2008), 317–328 |
22
|
41. |
O. V. Borodin, A. O. Ivanova, A. V. Kostochka, N. N. Sheikh, “Minimax degrees of quasiplane graphs without $4$-faces”, Sib. Èlektron. Mat. Izv., 4 (2007), 435–439 |
2
|
42. |
O. V. Borodin, A. O. Ivanova, B. S. Stechkin, “Decomposing a planar graph into a forest and a subgraph of restricted maximum degree”, Sib. Èlektron. Mat. Izv., 4 (2007), 296–299 |
3
|
|
2006 |
43. |
O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Oriented 5-coloring of sparse plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006), 16–32 ; J. Appl. Industr. Math., 1:1 (2007), 9–17 |
25
|
44. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$”, Sib. Èlektron. Mat. Izv., 3 (2006), 441–450 |
13
|
45. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “List $(p,q)$-coloring of sparse plane graphs”, Sib. Èlektron. Mat. Izv., 3 (2006), 355–361 |
5
|
|
2005 |
46. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005), 32–47 |
12
|
47. |
O. V. Borodin, A. O. Ivanova, “An oriented colouring of planar graphs with girth at least $4$”, Sib. Èlektron. Mat. Izv., 2 (2005), 239–249 |
5
|
48. |
O. V. Borodin, A. O. Ivanova, “An oriented $7$-colouring of planar graphs with girth at least $7$”, Sib. Èlektron. Mat. Izv., 2 (2005), 222–229 |
10
|
|
2004 |
49. |
O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable”, Sib. Èlektron. Mat. Izv., 1 (2004), 129–141 |
34
|
50. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “$2$-distance coloring of sparse planar graphs”, Sib. Èlektron. Mat. Izv., 1 (2004), 76–90 |
21
|
|
Organisations |
|
|
|
|