Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Pochinka, Olga Vital'evna

Doctor of physico-mathematical sciences (2004)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail: ,
Keywords: dynamical system.

Biography

1994–2004: Assistant of department of mathematics of Nizhny Novgorod State University.

2004 – present: Senior teacher of department of mathematics of Nizhny Novgorod State University.


https://www.mathnet.ru/eng/person25173
List of publications on Google Scholar
https://zbmath.org/authors/ai:pochinka.olga-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/712700
https://orcid.org/0000-0002-6587-5305

Publications in Math-Net.Ru Citations
2024
1. E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina, “Criterion for the existence of a connected characteristic space of orbits in a gradient-like diffeomorphism of a surface”, Izv. RAN. Ser. Mat., 88:3 (2024),  111–138  mathnet  mathscinet  zmath; Izv. Math., 88:3 (2024), 515–541  scopus
2. E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina, “Characteristic space of orbits of Morse–Smale diffeomorphisms on surfaces”, Mosc. Math. J., 24:1 (2024),  21–39  mathnet
3. O. V. Pochinka, E. A. Talanova, “Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices”, Mat. Zametki, 115:4 (2024),  597–609  mathnet  mathscinet; Math. Notes, 115:4 (2024), 588–598  scopus
4. E. M. Osenkov, O. V. Pochinka, “Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension”, Rus. J. Nonlin. Dyn., 20:1 (2024),  167–178  mathnet
5. Marina K. Barinova, Vyacheslav Z. Grines, Olga V. Pochinka, Evgeny V. Zhuzhoma, “Hyperbolic Attractors Which are Anosov Tori”, Regul. Chaotic Dyn., 29:2 (2024),  369–375  mathnet
6. Vyacheslav Z. Grines, Olga V. Pochinka, Ekaterina E. Chilina, “On Homeomorphisms of Three-Dimensional Manifolds with Pseudo-Anosov Attractors and Repellers”  mathnet 1
7. O. V. Pochinka, E. A. Talanova, “Morse-Smale diffeomorphisms with non-wandering points of pairwise different Morse indices on 3-manifolds”, Uspekhi Mat. Nauk, 79:1(475) (2024),  135–184  mathnet  mathscinet  zmath; Russian Math. Surveys, 79:1 (2024), 127–171  isi  scopus
8. V. D. Galkin, O. V. Pochinka, D. D. Shubin, “Classification of non-singular four-dimensional flows with a non-twisted saddle orbit”, Mat. Sb., 215:11 (2024),  65–91  mathnet
9. S. V. Zelik, O. V. Pochinka, A. A. Yagilev, “On the Minkowski dimension of some invariant sets of dynamical systems”, Zhurnal SVMO, 26:1 (2024),  32–43  mathnet
10. D. A. Baranov, E. V. Nozdrinova, O. V. Pochinka, “Scenario of stable transition from diffeomorphism of torus isotopic to identity one to skew product of rough transformations of circle”, Ufimsk. Mat. Zh., 16:1 (2024),  11–23  mathnet; Ufa Math. J., 16:1 (2024), 10–22 1
2023
11. A. Morozov, O. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on surfaces”, Mosc. Math. J., 23:4 (2023),  571–590  mathnet
12. O. V. Pochinka, D. D. Shubin, “Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit”, Rus. J. Nonlin. Dyn., 19:3 (2023),  371–381  mathnet
13. D. A. Baranov, V. Z. Grines, O. V. Pochinka, E. E. Chilina, “On a Classification of Periodic Maps on the 2-Torus”, Rus. J. Nonlin. Dyn., 19:1 (2023),  91–110  mathnet  mathscinet 1
14. Vladislav D. Galkin, Elena V. Nozdrinova, Olga V. Pochinka, “Circular Fleitas Scheme for Gradient-Like Flows on the Surface”, Regul. Chaotic Dyn., 28:6 (2023),  865–877  mathnet
15. O. V. Pochinka, E. A. Talanova, D. D. Shubin, “Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points”, Mat. Sb., 214:8 (2023),  94–107  mathnet  mathscinet  zmath; Sb. Math., 214:8 (2023), 1140–1152  isi  scopus 3
16. D. A. Baranov, E. S. Kosolapov, O. V. Pochinka, “Knot as a complete invariant of the diffeomorphism of surfaces with three periodic orbits”, Sibirsk. Mat. Zh., 64:4 (2023),  687–699  mathnet
17. M. K. Barinova, V. Z. Grines, O. V. Pochinka, “Criterion for the Existence of an Energy Function for a Regular Homeomorphism of the 3-Sphere”, Trudy Mat. Inst. Steklova, 321 (2023),  45–61  mathnet  mathscinet; Proc. Steklov Inst. Math., 321 (2023), 37–53  scopus 1
18. O. V. Pochinka, E. A. Talanova, “Minimizing the number of heteroclinic curves of a 3-diffeomorphism with fixed points with pairwise different Morse indices”, TMF, 215:2 (2023),  311–317  mathnet  mathscinet; Theoret. and Math. Phys., 215:2 (2023), 729–734  scopus 1
2022
19. V. E. Kruglov, O. V. Pochinka, “Topological conjugacy of gradient-like flows on surfaces and efficient algorithms for its distinguition”, CMFD, 68:3 (2022),  467–487  mathnet
20. O. V. Pochinka, D. D. Shubin, “Nonsingular Morse–Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds”, Mat. Zametki, 112:3 (2022),  426–443  mathnet  mathscinet; Math. Notes, 112:3 (2022), 436–450  scopus 3
21. Timur V. Medvedev, Elena V. Nozdrinova, Olga V. Pochinka, “Components of Stable Isotopy Connectedness of Morse – Smale Diffeomorphisms”, Regul. Chaotic Dyn., 27:1 (2022),  77–97  mathnet  mathscinet  isi  scopus 3
22. E. V. Nozdrinova, O. V. Pochinka, “Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a surface diffeomorphism”, Mat. Sb., 213:3 (2022),  81–110  mathnet  mathscinet  zmath; Sb. Math., 213:3 (2022), 357–384  isi  scopus 1
23. V. D. Galkin, O. V. Pochinka, “Spherical flow diagram with finite hyperbolic chain-recurrent set”, Zhurnal SVMO, 24:2 (2022),  132–140  mathnet
2021
24. V. E. Kruglov, O. V. Pochinka, “Classification of the Morse - Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy”, Izvestiya VUZ. Applied Nonlinear Dynamics, 29:6 (2021),  835–850  mathnet 1
25. M. K. Barinova, E. Y. Gogulina, O. V. Pochinka, “Omega-classification of Surface Diffeomorphisms Realizing Smale Diagrams”, Rus. J. Nonlin. Dyn., 17:3 (2021),  321–334  mathnet  scopus
26. O. V. Pochinka, E. V. Nozdrinova, “Stable Arcs Connecting Polar Cascades on a Torus”, Rus. J. Nonlin. Dyn., 17:1 (2021),  23–37  mathnet  mathscinet  scopus
27. Olga V. Pochinka, Svetlana Kh. Zinina, “Construction of the Morse –Bott Energy Function for Regular Topological Flows”, Regul. Chaotic Dyn., 26:4 (2021),  350–369  mathnet  isi  scopus 3
28. D. A. Baranov, O. V. Pochinka, “Classification of periodic transformations of an orientable surface of genus two”, Zhurnal SVMO, 23:2 (2021),  147–158  mathnet 2
29. V. Z. Grines, A. I. Morozov, O. V. Pochinka, “Realization of Homeomorphisms of Surfaces of Algebraically Finite Order by Morse–Smale Diffeomorphisms with Orientable Heteroclinic Intersection”, Trudy Mat. Inst. Steklova, 315 (2021),  95–107  mathnet; Proc. Steklov Inst. Math., 315 (2021), 85–97  isi  scopus 3
30. E. S. Kosolapov, O. V. Pochinka, “On the connection of periodic homeomorphisms of a surface with Seifert manifolds and the Morse-Smale diffeomorphism”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 3,  58–71  mathnet
31. V. I. Shmukler, O. V. Pochinka, “On bifurcations that change the type of heteroclinic curves of a Morse-Smale $3$-diffeomorphism”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 1,  101–114  mathnet 1
2020
32. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On embedding of the Morse–Smale diffeomorphisms in a topological flow”, CMFD, 66:2 (2020),  160–181  mathnet 1
33. O. V. Pochinka, S. Kh. Zinina, “A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets”, Mat. Zametki, 107:2 (2020),  276–285  mathnet  mathscinet  elib; Math. Notes, 107:2 (2020), 313–321  isi  elib  scopus 1
34. V. Z. Grines, E. V. Kruglov, O. V. Pochinka, “The Topological Classification of Diffeomorphisms of the Two-Dimensional Torus with an Orientable Attractor”, Rus. J. Nonlin. Dyn., 16:4 (2020),  595–606  mathnet  mathscinet
35. Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020),  716–728  mathnet  mathscinet  isi  scopus 3
36. E. V. Nozdrinova, O. V. Pochinka, “On the solution of the 33rd Palis–Pugh problem for gradient-like diffeomorphisms of a 2-sphere”, Uspekhi Mat. Nauk, 75:2(452) (2020),  195–196  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 75:2 (2020), 383–385  isi  scopus 1
37. A. I. Morozov, O. V. Pochinka, “Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic”, Zhurnal SVMO, 22:1 (2020),  71–80  mathnet 2
38. V. Z. Grines, E. V. Kruglov, O. V. Pochinka, “Scenario of a Simple Transition from a Structurally Stable 3-Diffeomorphism with a Two-Dimensional Expanding Attractor to a DA Diffeomorphism”, Trudy Mat. Inst. Steklova, 308 (2020),  152–166  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 308 (2020), 141–154  isi  scopus
39. O. V. Pochinka, S. Kh. Zinina, “Dynamics of regular topological flows”, Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 3,  77–91  mathnet
2019
40. O. V. Pochinka, S. Yu. Galkina, D. D. Shubin, “Modeling of gradient-like flows on $n$-sphere”, Izvestiya VUZ. Applied Nonlinear Dynamics, 27:6 (2019),  63–72  mathnet 1
41. V. Grines, E. Gurevich, O. Pochinka, “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Mosc. Math. J., 19:4 (2019),  739–760  mathnet  isi  scopus 5
42. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere $S^n$, $n\ge 4$”, Mat. Zametki, 105:1 (2019),  136–141  mathnet  mathscinet  elib; Math. Notes, 105:1 (2019), 132–136  isi  scopus 7
43. T. V. Medvedev, E. V. Nozdrinova, O. V. Pochinka, E. V. Shadrina, “On a Class of Isotopic Connectivity of Gradient-like Maps of the 2-sphere with Saddles of Negative Orientation Type”, Rus. J. Nonlin. Dyn., 15:2 (2019),  199–211  mathnet  elib 1
44. V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Uspekhi Mat. Nauk, 74:1(445) (2019),  41–116  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 74:1 (2019), 37–110  isi  scopus 28
45. A. A. Bosova, O. V. Pochinka, “On periodic mapping data of a two-dimensional torus with one saddle orbit”, Zhurnal SVMO, 21:2 (2019),  164–174  mathnet  elib
2018
46. O. V. Pochinka, A. S. Loginova, E. V. Nozdrinova, “One-Dimensional Reaction-Diffusion Equations and Simple Source-Sink Arcs on a Circle”, Nelin. Dinam., 14:3 (2018),  325–330  mathnet  elib  scopus
47. V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “A multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces”, Mat. Sb., 209:1 (2018),  100–126  mathnet  mathscinet  zmath  elib; Sb. Math., 209:1 (2018), 96–121  isi  scopus 8
48. A. E. Kolobyanina, E. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal SVMO, 20:4 (2018),  408–418  mathnet  elib 1
49. E. Nozdrinova, O. V. Pochinka, “On the dynamics of bifurcation diffeomorphisms of a simple arc”, Zhurnal SVMO, 20:1 (2018),  30–38  mathnet  elib
50. A. I. Morozov, O. V. Pochinka, “About new invariants of kupka-smale diffeomorphisms on the sphere without sources and sinks”, Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 3,  82–92  mathnet
2017
51. V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Dynamical systems and topology of magnetic fields in conducting medium”, CMFD, 63:3 (2017),  455–474  mathnet 3
52. V. Z. Grines, O. V. Pochinka, “Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds”, CMFD, 63:2 (2017),  191–222  mathnet 3
53. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “An Analog of Smale's Theorem for Homeomorphisms with Regular Dynamics”, Mat. Zametki, 102:4 (2017),  613–618  mathnet  mathscinet  elib; Math. Notes, 102:4 (2017), 569–574  isi  scopus 4
54. O. V. Pochinka, E. V. Kruglov, A. Y. Dolgonsova, “Scenario of reconnection in the solar corona with a simple discretization”, Nelin. Dinam., 13:4 (2017),  573–578  mathnet  elib
55. Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka, “On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics”, Regul. Chaotic Dyn., 22:2 (2017),  122–135  mathnet  isi  scopus 7
56. Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Realization of Morse–Smale diffeomorphisms on $3$-manifolds”, Trudy Mat. Inst. Steklova, 297 (2017),  46–61  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 297 (2017), 35–49  isi  scopus 7
57. A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energy function for an $\Omega$-stable flow with a saddle connection on a sphere”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 4,  51–58  mathnet
2016
58. V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Morse–Smale systems and topological structure of supporting manifolds”, CMFD, 61 (2016),  5–40  mathnet 3
59. V. Z. Grines, O. V. Pochinka, S. van Strien, “On $2$-diffeomorphisms with one-dimensional basic sets and a finite number of moduli”, Mosc. Math. J., 16:4 (2016),  727–749  mathnet  mathscinet  isi 10
60. T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies”, Tr. Mosk. Mat. Obs., 77:1 (2016),  83–102  mathnet  elib; Trans. Moscow Math. Soc., 77 (2016), 69–86  scopus 1
61. Vyacheslav Z. Grines, Dmitry S. Malyshev, Olga V. Pochinka, Svetlana Kh. Zinina, “Efficient Algorithms for the Recognition of Topologically Conjugate Gradient-like Diffeomorhisms”, Regul. Chaotic Dyn., 21:2 (2016),  189–203  mathnet  mathscinet  isi  scopus 7
62. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On embedding Morse–Smale diffeomorphisms on the sphere in topological flows”, Uspekhi Mat. Nauk, 71:6(432) (2016),  163–164  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 71:6 (2016), 1146–1148  isi  scopus 4
63. V. E. Kruglov, O. V. Pochinka, “Graph topological equivalence criterion for $\Omega$-stable flows on surfaces”, Zhurnal SVMO, 18:3 (2016),  41–48  mathnet  elib
64. V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “The graph criterion for the topological equivalence of $\Omega $ – stable flows without periodic trajectories on surfaces and efficient algorithm for its application”, Zhurnal SVMO, 18:2 (2016),  47–58  mathnet  elib 1
65. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Heteroclinic Curves of Gradient-like Diffeomorphsms and the Topology of Ambient Manifolds”, Zhurnal SVMO, 18:2 (2016),  11–15  mathnet  elib
66. V. Z. Grines, O. V. Pochinka, A. A. Shilovskaya, “Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori”, Zhurnal SVMO, 18:1 (2016),  17–26  mathnet  elib
2015
67. V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, CMFD, 57 (2015),  5–30  mathnet; Journal of Mathematical Sciences, 225:2 (2017), 195–219 3
68. V. Z. Grines, M. K. Noskova, O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor”, Tr. Mosk. Mat. Obs., 76:2 (2015),  271–286  mathnet  elib; Trans. Moscow Math. Soc., 76:2 (2015), 237–249  scopus 7
69. V. Z. Grines, Yu. A. Levchenko, O. V. Pochinka, “Topological Classification of Structurally Stable 3-Diffeomorphisms with Two-Dimensional Basis Sets”, Mat. Zametki, 97:2 (2015),  318–320  mathnet  mathscinet  zmath  elib; Math. Notes, 97:2 (2015), 304–306  isi  scopus 2
70. T. M. Mitryakova, O. V. Pochinka, “The criteria of the topological conjugacy of 3-diffeomorphisms with a finite number orbits of heteroclinic tangency”, Zhurnal SVMO, 17:4 (2015),  37–40  mathnet  elib
71. V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Construction of an energy function for A-diffeomorphisms of two-dimensional non-wandering sets on 3-manifolds”, Zhurnal SVMO, 17:3 (2015),  12–17  mathnet  elib 2
72. V. Z. Grines, O. V. Pochinka, A. A. Shilovskaya, “Topogically pseudocoherent diffeomorphisms of 3-manifolds”, Zhurnal SVMO, 17:2 (2015),  27–33  mathnet  elib
73. V. E. Kruglov, O. V. Pochinka, “Multicolored graph as a complete topological invariant for the flow with a finite number of singular trajectories on surfaces”, Zhurnal SVMO, 17:1 (2015),  65–70  mathnet  elib
74. V. Z. Grines, Yu. A. Levchenko, O. V. Pochinka, “The topological classification of locally direct product of DA-diffeomorphism of a 2-torus and rough diffeomorphism of the circle”, Zhurnal SVMO, 17:1 (2015),  30–36  mathnet  elib
2014
75. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “The Energy Function of Gradient-Like Flows and the Topological Classification Problem”, Mat. Zametki, 96:6 (2014),  856–863  mathnet  mathscinet  zmath  elib; Math. Notes, 96:6 (2014), 921–927  isi  elib  scopus 5
76. Vyacheslav Z. Grines, Yulia A. Levchenko, Olga V. Pochinka, “On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers”, Nelin. Dinam., 10:1 (2014),  17–33  mathnet 7
77. Vyacheslav Z. Grines, Yulia A. Levchenko, Vladislav S. Medvedev, Olga V. Pochinka, “On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms”, Regul. Chaotic Dyn., 19:4 (2014),  506–512  mathnet  mathscinet  zmath  isi 6
78. V. Z. Grines, S. H. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Mat. Sb., 205:10 (2014),  19–46  mathnet  mathscinet  zmath  elib; Sb. Math., 205:10 (2014), 1387–1412  isi  scopus 17
79. V. E. Kruglov, O. V. Pochinka, “Energy function as a complete topological invariant for gradient-like cascades on surfaces”, Zhurnal SVMO, 16:3 (2014),  57–61  mathnet
80. T. M. Mitryakova, O. V. Pochinka, “On topological conjugacy of 3-manifolds diffeomorphisms with one orbit of heteroclinic tangency”, Zhurnal SVMO, 16:2 (2014),  76–79  mathnet
81. V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Energy function for structurally stable 3-diffeomorphisms with two-dimensional expanding attractor”, Zhurnal SVMO, 16:2 (2014),  20–25  mathnet
82. V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “On existence of magnetic lines joining zero points”, Zhurnal SVMO, 16:1 (2014),  8–15  mathnet 2
2013
83. V. Z. Grines, O. V. Pochinka, “On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere”, Mat. Zametki, 94:6 (2013),  828–845  mathnet  mathscinet  zmath  elib; Math. Notes, 94:6 (2013), 862–875  isi  elib  scopus 9
84. T. M. Mitryakova, O. V. Pochinka, “Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy”, Mat. Zametki, 93:6 (2013),  902–919  mathnet  mathscinet  zmath  elib; Math. Notes, 93:6 (2013), 890–905  isi  elib  scopus 3
85. V. Z. Grines, O. V. Pochinka, “Morse–Smale cascades on 3-manifolds”, Uspekhi Mat. Nauk, 68:1(409) (2013),  129–188  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 68:1 (2013), 117–173  isi  elib  scopus 21
86. E. A. Grines, O. V. Pochinka, “Necessary conditions for topological conjugacy of 3-manifolds diffeomorphisms with orbits of heteroclinic tangency”, Zhurnal SVMO, 15:4 (2013),  77–90  mathnet
87. V. Z. Grines, T. M. Mitryakova, O. V. Pochinka, “Energy function for rough cascades on surfaces with nontrivial one-dimensional basic sets”, Zhurnal SVMO, 15:4 (2013),  9–14  mathnet
88. O. V. Pochinka, A. A. Romanov, “The example of a diffeomorfism «source-sink» which does not include to a smooth flow”, Zhurnal SVMO, 15:3 (2013),  123–125  mathnet
89. V. Z. Grines, O. V. Pochinka, A. V. Ruzaev, A. N. Saharov, “Energy function as complete topological invariant for the gradient-like flows with the saddle points of the same Morse index on 3-manifolds”, Zhurnal SVMO, 15:1 (2013),  16–22  mathnet
2012
90. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “Embedding in a Flow of Morse–Smale Diffeomorphisms on Manifolds of Dimension Higher than Two”, Mat. Zametki, 91:5 (2012),  791–794  mathnet  mathscinet  elib; Math. Notes, 91:5 (2012), 742–745  isi  elib  scopus 7
91. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow”, Mat. Sb., 203:12 (2012),  81–104  mathnet  mathscinet  zmath  elib; Sb. Math., 203:12 (2012), 1761–1784  isi  scopus 17
92. I. S. Klykov, O. V. Pochinka, “Rough heteroclinic curves in neural networks”, Zhurnal SVMO, 14:4 (2012),  77–83  mathnet
93. O. V. Pochinka, A. A. Romanov, “Period-doubling bifurcation in a simple arc connecting Pixton's diffeomorphisms”, Zhurnal SVMO, 14:3 (2012),  74–79  mathnet 1
94. T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Energy function for diffeomorphisms on surfaces with finite hyperbolic chain recurrent set”, Zhurnal SVMO, 14:1 (2012),  98–106  mathnet 3
95. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Complete topological invariant of Morse-Smale Diffeomorphism without heteroclinical intersections on Sphere $S^n$ of dimensional greater than three”, Zhurnal SVMO, 14:1 (2012),  16–24  mathnet
96. V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Dynamically ordered energy function for Morse–Smale diffeomorphisms on $3$-manifolds”, Trudy Mat. Inst. Steklova, 278 (2012),  34–48  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 278 (2012), 27–40  isi  elib  scopus 15
2011
97. O. V. Pochinka, “Necessary and sufficient conditions for topological classification of Morse–Smale cascades on 3-manifolds”, Nelin. Dinam., 7:2 (2011),  227–238  mathnet  elib 1
98. O. V. Pochinka, “Complete topological invariant for Morse-Smale diffeomorphisms on 3-manifolds”, Zhurnal SVMO, 13:2 (2011),  17–24  mathnet
99. T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “On a structure of the space wandering orbits of diffeomorphisms on surfaces with the finite hyperbolic chain recurrent set”, Zhurnal SVMO, 13:1 (2011),  63–70  mathnet 1
2010
100. T. M. Mitryakova, O. V. Pochinka, “To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy”, Nelin. Dinam., 6:1 (2010),  91–105  mathnet  elib 3
101. T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Dynamics of diffeomorphisms on surfaces with the finite number of topological conjugacy moduli”, Zhurnal SVMO, 12:2 (2010),  77–85  mathnet
102. V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Trudy Mat. Inst. Steklova, 271 (2010),  111–133  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 271 (2010), 103–124  isi  scopus 54
103. T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Trudy Mat. Inst. Steklova, 270 (2010),  198–219  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 270 (2010), 194–215  isi  scopus 10
2009
104. V. Grines, F. Laudenbach, O. Pochinka, “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Mosc. Math. J., 9:4 (2009),  801–821  mathnet  mathscinet  zmath  isi 15
105. V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Quasi-Energy Function for Diffeomorphisms with Wild Separatrices”, Mat. Zametki, 86:2 (2009),  175–183  mathnet  mathscinet  zmath; Math. Notes, 86:2 (2009), 163–170  isi  scopus 8
106. V. Z. Grines, O. V. Pochinka, A. E. Shishenkova, L. A. Kuprina, “$f$-adapted filtration for Morse-Smale diffeomorphisms”, Trudy SVMO, 11:2 (2009),  26–34  mathnet
107. T. M. Mitryakova, O. V. Pochinka, “Realization of abstract scheme by diffeomorphism of surface with a finite number of moduli stability.”, Trudy SVMO, 11:1 (2009),  89–98  mathnet
2008
108. T. M. Mitryakova, O. V. Pochinka, “Sufficient conditions of topological conjugacy of diffeomorphisms with heteroclinic contacts on surfaces”, Trudy SVMO, 10:2 (2008),  166–176  mathnet
109. V. Z. Grines, O. V. Pochinka, A. E. Shishenkova, “Lyapunov functions for dynamical systems”, Trudy SVMO, 10:2 (2008),  11–20  mathnet
110. O. V. Pochinka, E. A. Talanova, “Topological conjugacy of gradient-like diffeomorphisms with unique heteroclinic curve on $\mathbf{S}^3$”, Trudy SVMO, 10:1 (2008),  241–250  mathnet
111. V. Z. Grines, O. V. Pochinka, A. E. Shishenkova, “Diffeomorphisms of 3-sphere with wild frame of separatrices”, Trudy SVMO, 10:1 (2008),  132–137  mathnet
2007
112. C. Bonatti, V. Z. Grines, V. S. Medvedev, O. V. Pochinka, “Bifurcations of Morse–Smale Diffeomorphisms with Wildly Embedded Separatrices”, Trudy Mat. Inst. Steklova, 256 (2007),  54–69  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 256 (2007), 47–61  elib  scopus 16
2005
113. Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Classification of Morse–Smale Diffeomorphisms with a Finite Set of Heteroclinic Orbits on 3-Manifolds”, Trudy Mat. Inst. Steklova, 250 (2005),  5–53  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 250 (2005), 1–46 28

2022
114. O. N. Ageev, Ya. B. Vorobets, B. Weiss, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, L. S. Efremova, A. Yu. Zhirov, E. V. Zhuzhoma, B. S. Kashin, V. N. Kolokoltsov, A. V. Kochergin, L. M. Lerman, I. V. Mykytyuk, V. I. Oseledets, A. Yu. Plakhov, O. V. Pochinka, V. V. Ryzhikov, V. Zh. Sakbaev, A. G. Sergeev, Ya. G. Sinai, A. T. Tagi-Zade, S. V. Tikhonov, J.-P. Thouvenot, A. Ya. Helemskii, A. I. Shafarevich, “Anatolii Mikhailovich Stepin (obituary)”, Uspekhi Mat. Nauk, 77:2(464) (2022),  189–194  mathnet  mathscinet  zmath; Russian Math. Surveys, 77:2 (2022), 361–367  isi
2021
115. O. V. Anashkin, P. M. Akhmet'ev, D. V. Balandin, M. K. Barinova, I. V. Boykov, A. N. Bezdenezhnyh, V. N. Belykh, P. A. Vel'misov, I. Yu. Vlasenko, O. E. Galkin, S. Yu. Galkina, V. K. Gorbunov, S. D. Glyzin, S. V. Gonchenko, A. S. Gorodetski, E. V. Gubina, E. Ya. Gurevich, A. A. Davydov, L. S. Efremova, R. V. Zhalnin, A. Yu. Zhirov, E. V. Zhuzhoma, N. I. Zhukova, S. Kh. Zinina, Yu. S. Ilyashenko, N. V. Isaenkova, A. O. Kazakov, A. V. Klimenko, S. A. Komech, Yu. A. Kordyukov, V. E. Kruglov, E. V. Kruglov, E. B. Kuznetsov, S. K. Lando, Yu. A. Levchenko, L. M. Lerman, S. I. Maksimenko, M. I. Malkin, D. S. Malyshev, V. K. Mamaev, T. Ph. Mamedova, V. S. Medvedev, T. V. Medvedev, D. I. Mints, T. M. Mitryakova, A. D. Morozov, A. I. Morozov, E. V. Nozdrinova, E. N. Pelinovsky, Ya. B. Pesin, A. S. Pikovsky, S. Yu. Pilyugin, G. M. Polotovsky, O. V. Pochinka, I. D. Remizov, P. E. Ryabov, A. S. Skripchenko, A. V. Slunyaev, S. V. Sokolov, L. A. Sukharev, E. A. Talanova, V. A. Timorin, S. B. Tikhomirov, V. F. Tishkin, D. V. Treschev, D. V. Turaev, N. G. Chebochko, E. E. Chilina, P. A. Shamanaev, D. D. Shubin, E. I. Yakovlev, “To the 75th anniversary of Vyacheslav Zigmundovich Grines”, Zhurnal SVMO, 23:4 (2021),  472–476  mathnet
2020
116. I. V. Boykov, P. A. Vel'misov, È. R. Gizzatova, V. K. Gorbunov, V. Z. Grines, I. M. Gubaydullin, Yu. N. Deryugin, E. V. Desyaev, D. K. Egorova, A. P. Zhabko, R. V. Zhalnin, A. S. Ismagilova, V. N. Krizsky, E. B. Kuznetsov, T. Ph. Mamedova, N. D. Morozkin, S. M. Muryumin, S. A. Mustafina, O. V. Pochinka, I. P. Ryazantseva, K. B. Sabitov, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “In memory of Spivak Semen Izrailevich”, Zhurnal SVMO, 22:4 (2020),  463–466  mathnet  elib
2018
117. A. S. Andreev, A. V. Ankilov, T. E. Badokina, D. I. Boyarkin, I. V. Boykov, D. K. Egorova, V. Z. Grines, S. A. Grishina, V. K. Gorbunov, Yu. N. Deryugin, E. V. Desyaev, R. V. Zhalnin, I. V. Konopleva, L. R. Kim-Tyan, V. N. Krizsky, S. I. Martynov, T. Ph. Mamedova, S. M. Muryumin, E. E. Peskova, Yu. V. Pokladova, O. V. Pochinka, V. P. Radchenko, I. P. Ryazantseva, S. I. Spivak, L. A. Sukharev, A. O. Syromyasov, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, O. S. Yazovtseva, N. G. Yarushkina, A.-V. Ion, “Velmisov Petr Aleksandrovich (on his seventieth birthday)”, Zhurnal SVMO, 20:3 (2018),  338–340  mathnet
118. A. S. Andreev, A. N. Andronov, T. E. Badokina, D. I. Boyarkin, I. V. Boykov, P. A. Vel'misov, V. Z. Grines, S. A. Grishina, V. K. Gorbunov, Yu. N. Deryugin, A. P. Zhabko, R. V. Zhalnin, I. V. Konopleva, L. R. Kim-Tyan, V. N. Krizsky, T. Ph. Mamedova, S. M. Muryumin, O. V. Pochinka, I. P. Ryazantseva, N. V. Savinov, A. R. Sibireva, L. A. Sukharev, V. F. Tishkin, E. V. Foliadova, I. I. Chuchaev, P. A. Shamanaev, N. G. Yarushkina, “In memory of Boris Vladimirovich Loginov”, Zhurnal SVMO, 20:1 (2018),  103–106  mathnet  elib
2017
119. E. N. Artem'eva, I. V. Boykov, M. A. Borisov, D. I. Boyarkin, P. A. Vel'misov, V. K. Gorbunov, T. A. Gorshunova, V. Z. Grines, Yu. N. Deryugin, E. V. Desyaev, D. K. Egorova, R. V. Zhalnin, O. E. Kaledin, V. N. Krizsky, E. B. Kuznetsov, B. V. Loginov, T. Ph. Mamedova, S. I. Martynov, N. D. Morozkin, S. M. Muryumin, I. P. Nikitin, O. V. Pochinka, D. V. Pashutkin, A. Yu. Pavlov, E. E. Peskova, I. P. Ryazantseva, V. I. Safonkin, G. A. Smolkin, S. I. Spivak, L. A. Sukharev, A. O. Syromyasov, M. T. Terekhin, V. F. Tishkin, S. A. Firsova, E. A. Chernoivanova, I. I. Chuchaev, P. A. Shamanaev, O. S. Yazovtseva, Z. Ya. Yakupov, “On the 80th anniversary of professor E.V. Voskresensky's birthday”, Zhurnal SVMO, 19:4 (2017),  95–99  mathnet
2016
120. S. V. Gonchenko, E. V. Zhuzhoma, E. Ya. Gurevich, L. M. Lerman, O. V. Pochinka, V. F. Tishkin, I. I. Chuchaev, L. A. Sukharev, P. A. Shamanaev, R. V. Zhalnin, T. Ph. Mamedova, “Вячеслав Зигмундович Гринес (к семидесятилетию со дня рождения)”, Zhurnal SVMO, 18:4 (2016),  168–171  mathnet
2010
121. V. Grines, O. Pochinka, “Energy functions for dynamical systems”, Regul. Chaotic Dyn., 15:2-3 (2010),  185–193  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Динамические системы Морса - Смейла
O. V. Pochinka
Meetings of the St. Petersburg Mathematical Society
November 12, 2024 18:00   
2. NMS-flows on 4-manifolds
O. V. Pochinka
Dynamics days in Sirius. On the occasion of academician Dmitry V. Treschev’s anniversary
October 28, 2024 15:00
3. Andronov School of Nonlinear Oscillations
O. V. Pochinka
Joint Mathematical seminar of Saint Petersburg State University and Peking University
March 14, 2024 15:00
4. On the dynamics of 3-homeomorphisms with two-dimensional attractors and repellers
E. E. Chilina, V. Z. Grines, O. V. Pochinka
International conference “Ergodic Theory and Related Topics”
November 24, 2022 15:00   
5. Quasi-energy function for Pixton diffeomorphisms
O. V. Pochinka
International conference “Ergodic Theory and Related Topics”
November 21, 2022 12:10   
6. Hopf knot as a complete invariant of Morse–Smale diffeomorphisms on the 3-sphere
O. V. Pochinka
International Conference “Differential Equations and Optimal Control” dedicated to the centenary of the birth of Academician Evgenii Frolovich Mishchenko
June 8, 2022 10:15   
7. 3-Diifeomorphisms with Dynamics “One-Dimensional Surfaced Attractor-Repeller”
O. V. Pochinka
Regular and Chaotic Dynamics
November 23, 2021 14:00   
8. 3-Diffeomorphisms with dynamics “one-dimensional surfaced attractor-repeller”
O. V. Pochinka
Conference «Hyperbolic Dynamics and Structural Stability» Dedicated to the 85th Anniversary of D. V. Anosov
November 11, 2021 14:00   
9. О структурной устойчивости 3-диффеоморфизмов с одномерными аттрактором и репеллером
O. V. Pochinka

August 9, 2021 14:30
10. Топологическая классификация диффеоморфизмов Морса-Смейла
O. V. Pochinka
Modern geometry methods
May 13, 2021 17:00
11. Топологическая классификация диффеоморфизмов Морса-Смейла
O. V. Pochinka
Modern geometry methods
April 7, 2021 19:00
12. On the embedding of Morse Smale diffeomorphisms in a topological flow
O. V. Pochinka, V. Z. Grines, E. Ya. Gurevich
One-Parameter Semigroups of Operators (OPSO) 2021
April 5, 2021 16:10   
13. Topological objects in invariant sets of dynamical systems
O. V. Pochinka
Dynamics in Siberia - 2019
February 28, 2019 12:50
14. Topological classification of Morse–Smale systems
O. V. Pochinka
International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin
December 14, 2018 09:45   
15. On Palis Problem of Embedding of Morse–Smale Cascades into Flows
O. V. Pochinka
International conference «Real and Complex Dynamical Systems», dedicated to the to the 75th anniversary of Yu. S. Il'yashenko
November 27, 2018 16:05   
16. On topological classification of Morse–Smale systems
O. V. Pochinka
International Conference “Anosov Systems and Modern Dynamics” dedicated to the 80th anniversary of Dmitry Anosov
December 22, 2016 12:55   
17. Energy Function for structurally stable 3-diffeomorphisms with two-dimensional expanding attractor
O. V. Pochinka
International Conference on Differential Equations and Dynamical Systems
July 5, 2014 15:00
18. О топологической классификации диффеоморфизмов Морса–Смейла и их вложимости в потоки
V. Z. Grines, O. V. Pochinka
Seminar "Optimal Control and Dynamical Systems"
April 18, 2012 13:00
19. Энергетическая функция для диффеоморфизмов Морса–Смейла на 3-многообразиях
V. Z. Grines, O. V. Pochinka
Seminar "Optimal Control and Dynamical Systems"
May 14, 2008 12:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024