Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 6, Pages 716–728
DOI: https://doi.org/10.1134/S1560354720060143
(Mi rcd1095)
 

This article is cited in 3 scientific papers (total in 3 papers)

On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy

Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin

National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
Citations (3)
References:
Abstract: In this paper, we study gradient-like flows without heteroclinic intersections on an n-sphere up to topological conjugacy. We prove that such a flow is completely defined by a bicolor tree corresponding to a skeleton formed by codimension one separatrices. Moreover, we show that such a tree is a complete invariant for these flows with respect to the topological equivalence also. This result implies that for these flows with the same (up to a change of coordinates) partitions into trajectories, the partitions for elements, composing isotopies connecting time-one shifts of these flows with the identity map, also coincide. This phenomenon strongly contrasts with the situation for flows with periodic orbits and connections, where one class of equivalence contains continuum classes of conjugacy. In addition, we realize every connected bicolor tree by a gradient-like flow without heteroclinic intersections on the $n$-sphere. In addition, we present a linear-time algorithm on the number of vertices for distinguishing these trees.
Keywords: gradient-like flow, topological classification, topological conjugacy, $n$-sphere, lineartime algorithm.
Funding agency Grant number
Russian Science Foundation 17-11-01041.
Ministry of Education and Science of the Russian Federation 075-15-2019-1931
Russian Foundation for Basic Research 20-31-90067
The realization results were implemented as an output of the RSF project No 17-11-01041. The classification results were obtained with assistance from the Laboratory of Dynamical Systems and Applications NRU HSE of the Ministry of science and Higher Education of the RF grant ag. No 075-15-2019-1931 and the RFBR project No 20-31-90067. The algorithmic results (Theorem 2.7 and its proof) were prepared within the framework of the Basic Research Program at the National Research University “Higher School of Economics” (HSE).
Received: 14.03.2020
Accepted: 12.11.2020
Bibliographic databases:
Document Type: Article
MSC: 37D15, 37C15
Language: English
Citation: Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728
Citation in format AMSBIB
\Bibitem{KruMalPoc20}
\by Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin
\paper On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 716--728
\mathnet{http://mi.mathnet.ru/rcd1095}
\crossref{https://doi.org/10.1134/S1560354720060143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4184423}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000596572500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097234192}
Linking options:
  • https://www.mathnet.ru/eng/rcd1095
  • https://www.mathnet.ru/eng/rcd/v25/i6/p716
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:134
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024