Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 12, Pages 1761–1784
DOI: https://doi.org/10.1070/SM2012v203n12ABEH004286
(Mi sm8094)
 

This article is cited in 17 scientific papers (total in 17 papers)

On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow

V. Z. Grinesa, E. Ya. Gurevicha, V. S. Medvedevb, O. V. Pochinkaa

a N. I. Lobachevski State University of Nizhni Novgorod
b Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
References:
Abstract: In this paper, for the case of 3-dimensional manifolds, we solve the Palis problem on finding necessary and sufficient conditions for a Morse-Smale cascade to embed in a topological flow. The set of such cascades is open in the space of all diffeomorphisms, while the set of arbitrary diffeomorphisms that embed in a smooth flow is nowhere dense. Also, we consider a class of diffeomorphisms that embed in a topological flow and prove that a complete topological invariant for this class is similar to the Andronova-Maier scheme and the Peixoto graph.
Bibliography: 26 titles.
Keywords: Morse-Smale diffeomorphism, Morse-Smale cascade, embedding in a flow, dynamical systems on manifolds.
Received: 15.12.2011 and 02.05.2012
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 12, Pages 81–104
DOI: https://doi.org/10.4213/sm8094
Bibliographic databases:
Document Type: Article
UDC: 517.938
MSC: Primary 37D15; Secondary 37C05, 37C15
Language: English
Original paper language: Russian
Citation: V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow”, Mat. Sb., 203:12 (2012), 81–104; Sb. Math., 203:12 (2012), 1761–1784
Citation in format AMSBIB
\Bibitem{GriGurMed12}
\by V.~Z.~Grines, E.~Ya.~Gurevich, V.~S.~Medvedev, O.~V.~Pochinka
\paper On embedding a Morse-Smale diffeomorphism on a~3-manifold in a~topological flow
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 12
\pages 81--104
\mathnet{http://mi.mathnet.ru/sm8094}
\crossref{https://doi.org/10.4213/sm8094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3060070}
\zmath{https://zbmath.org/?q=an:06146427}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203.1761G}
\elib{https://elibrary.ru/item.asp?id=19066378}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 12
\pages 1761--1784
\crossref{https://doi.org/10.1070/SM2012v203n12ABEH004286}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314820300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874097740}
Linking options:
  • https://www.mathnet.ru/eng/sm8094
  • https://doi.org/10.1070/SM2012v203n12ABEH004286
  • https://www.mathnet.ru/eng/sm/v203/i12/p81
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:564
    Russian version PDF:237
    English version PDF:11
    References:70
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024